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Abstract. Tree nurseries are responsible for providing strong and healthy seedlings to ensure their development 

into trees and increase overall efficiency of forest regrowing process. Seedlings during the first stages of 

development are usually grown in large greenhouses or dedicated open fields. Despite growing indoors in a 

greenhouse, a lot of weed seeds may get into the soil in different ways: ventilation, mobile machines, workers, 

birds etc. Currently weeding is performed by periodically removing the trays affected and working manually. This 

is time consuming and costly process. The ultimate solution would be full automation of inspection and weeding 

process on-site using some mobile robotized equipment. Such equipment will have to localize in the greenhouse 

to be able to operate on plants at different areas. Aim of the current study is to evaluate possibility to use main 

camera primarily intended for plant inspection also for localisation purposes in tree nursery greenhouses using 

visual odometry (VO). Four different VO methods were compared on a set of 111 experimental images. Results 

show, that phase cross correlation method with its 1.056 s execution time for 111 frame images and 0.7 mm error 

over one metre is the best option to use for linear movement of a sensor bundle in a greenhouse environment. 
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Introduction 

For successful operation of industrial and recreational forestry as well as reforestation of territories 

in general quality planting material is essential. According to Official statistics of Latvia annual 

reforestation is more than 40 thousand ha during last 5 years and requires more than 60 million of 

seedlings per year [1]. Tree nurseries are responsible for providing strong and healthy seedlings to ensure 

their development into trees and increase overall efficiency of forest regrowing process. Seedlings 

during the first stages of development are usually grown in large greenhouses or dedicated open fields. 

To increase the area use effectiveness, seeds are planted into trays, which are placed as tight as possible 

on the available space. A typical installation of this kind for Pinus sylvestris L. is shown in Fig. 1. At 

the far end of the greenhouse irrigation installation can be seen. It moves on a rail under the top of the 

roof and performs watering and fertilizing of the plants. 

 

Fig. 1. Seedlings in a greenhouse of “Norupes” tree nursery, Ogre, Latvia 

Despite growing indoors in a greenhouse, a lot of weed seeds may get into the soil in different ways: 

ventilation, mobile machines, workers, birds etc. Currently weeding is performed by periodically 

removing the trays affected and working manually. This is time consuming and costly process. Pathways 

between trays are also no-solution as they will decrease total seedling output and will have more negative 

economic effect than labour cost for relocation of trays during weeding. Also, timely recognition of 

diseases is essential to prevent loss of planting material. These problems grow only increase when 

growing outdoors. 

The ultimate solution would be full automation of inspection and weeding process on-site without 

relocation of trays. This could be achieved by a robotized unit moving on linear rails in the same way 
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as irrigation equipment or these two could be organized into a single machine. First step of this ultimate 

solution is to introduce monitoring system capable of detection weeds and diseases as well as monitor 

total health of seedlings. This study is part of a research project aiming to develop a vision sensor bundle 

attachable to irrigation system. The main idea is to use existing irrigation infrastructure to move sensor 

bundle in the longer dimension of greenhouse and add additional rail on irrigation tube itself for the 

shorter dimension. Working laboratory prototype is shown on Fig. 2. 

 

Fig. 2. Laboratory prototype of tree nursery greenhouse monitoring system: 1 – Axis with driving 

stepper motors; 2 – sensor bundle with cameras; 3 – trays with seedlings 

As any autonomous mobile equipment such sensor bundle should be able to localize itself in the 

coordinate frame of the greenhouse. The most obvious way would be to use encoders or range sensors. 

On irrigation systems available on market usually inductive type sensors are used, but their precision 

may not be enough: there are 4 cogs on 200 mm pulley giving 157 mm resolution. In any case additional 

encoder for the second axis is necessary. In current laboratory prototype positioning is performed using 

rubber wheel encoders Sick DBV50 for both axes.  

Use of dedicated localization sensors may come with a number of problems: 

• in general greenhouse environment is considered quite harsh for electronics (moist, fertilizers, 

plant protections chemicals etc), fine mechanical encoders may not be reliable in such 

environment [2]; 

• there may be also system integration issues to read the position information from different 

irrigation equipment; 

• relatively long distances and moving parts require quality connection cables. 

Aim of the current study is to evaluate possibility to use main camera primarily intended for plant 

inspection also for localisation purposes in tree nursery greenhouses using visual odometry (VO). VO 

is the process of estimating the pose and motion of the camera from an image sequence; using consumer-

grade cameras rather than expensive sensors or systems, VO is an inexpensive and simple approach to 

estimate the location of robots and vehicles [3]. Visual odometry is successfully finding its place in 

autonomous vehicles for applications in agriculture. Examples like unmanned aerial vehicles (UAV) for 

survey and spraying tasks as well as ground vehicles for various operations directly on plants [4]. There 

are a number of different VO algorithms with their strengths and weaknesses. In essence VO algorithm 

is detecting pixel displacement in two consequent images from cameras thus estimating camera 

movement in terms of pixels. To obtain movement in real life units, pixels should be converted into 

length units. 

Current case, when camera is moving along two axes resulting only in translation movement makes 

the task easier from computation point of view as rotation may not be considered. Results of this research 

may also be applicable for similar precision irrigation/fertilizing systems based on moving frames. Also, 
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they may be relevant for precision plant-level agricultural equipment that moves only along rows like 

robotized or tractor-mounted laser weeders, where rotation movement may be neglected. 

Materials and methods 

The evaluation consists of three steps. 

1. Evaluation of height changes. 

2. Running test sequence of images and comparison of real pixel displacement and one obtained by 

visual odometry method. 

3. Evaluation of time for each method to process images (mean for image pair and total time for the 

sequence). 

Sensor bundle incorporates Alvium G5-508 RGB camera with Edmund optics TECHSPEC® HR 

Series 16 mm Fixed Focal Length lens, pixel size 3.45 μm. This was used as data source of image 

sequence for visual odometry. Calibration of the camera (obtaining intrinsic camera matrix) was 

performed and images were undistorted using open-source computer vision library OpenCV [5]. Images 

were taken on laboratory prototype running for one meter every 10 mm, 111 images in total. A typical 

image (raw and undistorted) is shown on Fig. 3. All images were taken on constant height 500 mm. 

  

Fig. 3. A typical image from obtained sequence: raw distorted image on the left  

and undistorted after processing in OpenCV on the right 

“Ground truth” or real pixel movement for 100 image sequence was determined manually by 

counting pixel displacement between undistorted frames using ruler ticks as reference. 

To evaluate performance of VO in terms of real-world units pixel size in millimetres is necessary. 

Pixel size in millimetres for both camera sensor axis can be easily calculated using well-known imaging 

equation: 
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where K – pixel to mm ratio for camera sensor, pix·mm-1; 

 f – camera focal length, mm; 

 S – sensor size, mm; 

 sp – pixel size, mm; 

 Hc – distance from lens focal point to surface; 

 R – camera resolution, pixels. 

Maximum error for ground truth is one pixel, which results in ±(500*0.003454/16 = 0.1 mm·pix-1) 

for above-given camera parameters and Hc = 500 mm. 

Four visual odometry methods were used for evaluation. Each method detects pixel movement 

between two consecutive images using different approach. 

• Optical flow (Lucas-Kanade) – computes motion between sparse key points using changes in 

pixel intensity [6]. 
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• Dense optical flow (Farneback) – computes motion for every pixel using changes in pixel 

intensity [7]. 

• 2D image correlation – measures similarity by sliding one over the other to calculate a 

correlation score to find best alignment [8]. 

• Phase cross correlation – measures phase differences in the frequency domain to estimate 

motion [9]. 

Python implementations of all methods was used for evaluation. Multiple libraries were utilized, 

including OpenCv (opencv-python) for optical flow, signal processing (scipy.signal) for 2D image 

correlation, image registration (skimage.registration) for phase cross correlation, scientific computing 

(numpy) for calculations and time measurement (time). To exclude possible effect oh height changes 

and lens sensor-system, pixel-mm ratio K was obtained directly from test images by counting pixels in 

the size of ruler. VO was performed on cropped images to reduce the effect from lens distortion and to 

reduce computing resources and processing time. The original image had a resolution of 2432x2018 pix, 

the cropped image sizes for every method are given in Table 1. 

Table 1 

Image sizes for different methods 

Method Cropped Area (%) Size, pix 

Optical flow 30 605x729 

Dense Optical Flow 30 605x729 

Correlate 2D 10 200x242 

Phase cross correlation 10 201x243 

For correlate 2D and phase cross correlation the cropped area was 10% of the middle. For optical 

flow a larger cropped middle area was required – 30%, as smaller image regions led to difficulties in 

accurately estimating motion between the pictures. 

Execution speed of all methods was compared on three different computers (see Table 2). Execution 

time was measure was performed by Python “time” module, image reading from disk was not included 

in time measurement. 

Table 2 

Computers used in execution speed comparison 

Machine C1 (Google colab) C2 (personal) C3 (notebook) 

CPU 

Model 
Intel(R) Xeon(R) 

CPU @ 2.20GHz 

13th Gen Intel(R) 

Core(TM) i7-

13700KF 

Intel(R) Core(TM) 

i5-8250U CPU @ 

1.60GHz   

Clock speed 2.20GHz 3.4 GHz 1.6 GHz 

Cache Size 56.32 MB 30 MB 6 MB 

Cores 1 16 4 

Threads 2 24 8 

RAM Total RAM 12.69 GB 64 GB 12 GB 

Results and discussion 

Evaluation of height change effect 

Ratio K is strongly dependent on camera distance to surface. In case of UAV applications distance 

Hc is usually measured using dedicated sensor, e.g. AFBR-S50LV85D Time-of-Flight laser rangefinder 

or similar. In case of ground vehicles this distance is much smaller and changes insignificantly and often 

is taken as constant [4]. In our application height changing happens manly due to swinging horizontally 

positioned irrigation tube and unevenness in seedling tray placement. Height changes are estimated to 

be Hc = 500 ± 20 mm. For f = 16 mm, sp = 3.45 μm this will result in pixel ratio partial error  

 K = 9.275 (+0.386, –0.357) pix·mm-1 or (+4.2, –3.9) %. 

In displacement terms for 1 m, we will get error about 4 cm. In order to decrease this error additional 

height measurement would be necessary. However, if comparing with resolution of existing inductive 
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sensor encoder with 4 cogs (157 mm), VO without dedicated Hc measurement sensor is possible to use 

for short movement detection with better accuracy and clear accumulated error at each pulse from the 

encoder.  

Another option available for greenhouse application is fact, that objects of known size – seedling 

trays – are always in vicinity of the camera. Advantage of it can be taken, by calculating ratio K for 

visible sizes in pixel of tray cells detected by some computer vision algorithm. 

Evaluation of displacement 

The comparison between the measured displacement in each frame and the values calculated using 

the OV methods are presented in Fig. 4. 

 

Fig. 4. Frame-wise motion detection comparison of different VO methods and real measurement 

Comparing the real displacement in each individual frame (represented by the red line) to the 

calculated displacements obtained by the OV methods, the following results were observed: optical flow 

(error range: -3.17% to 2.72%), dense optical flow (error range:  -6.78% to 2.30%), correlate2d (error 

range:  -7.65% to 4.59%), phase cross corelation (error range:  -13.81% to 6.36%). However, for total 

distance (summarized in Table 3) individual frame errors average and the final measurement is close to 

obtained by other authors. Comparing the VO methods calculated displacements to the actual 

displacement, the error margin ranges from -0.04% to 1.63%. The results, listed in order of increasing 

error, are as follows: phase cross correlation (error: -0.04%), optical flow (error: -0.65%), dense optical 

flow (error: -0.94%), correlate 2D (error: 1.63%). For example, for translation movement and VO using 

the most precise (and resource consuming) method Correlate 2D error was only 0.2 mm which falls into 

range obtained in [4]. 

Evaluation of execution time 

The total calculated distance and execution time of the OV methods are given in Table 3. The 

execution times of the methods across all three computers described in Table 2 (C1-C3), listed from 

fastest to slowest, are as follows: phase cross correlation, optical flow, dense optical flow, correlate 2D. 

The fastest execution times were observed with phase cross correlation and optical flow, with the highest 

recorded execution time remaining under 4 seconds in all cases. Dense optical flow and correlate 2D 

demonstrated significantly slower performance, with the longest execution time exceeding 30 seconds.  
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According to the obtained results Phase cross correlation method with its best execution time and 

reasonable error is the best option to use for linear movement of a sensor bundle in a greenhouse 

environment. 

 

Table 3 

Summary of displacement and execution time measurements for each of the methods 

Method 

Total 

distance, 

mm 

Com-

parison, 

% 

Error, 

% 

Execution time total, s 
Execution time 

average per frame, s 

C1 C2 C3 C1 C2 C3 

Real 

movement 
1086.2 100 0 – – – – – – 

Optical Flow 1079.1 99.35 -0.65 3.142 1.502 3.574 0.028 0.014 0.032 

Dense 

Optical Flow 
1068.9 98.41 -1.58 47.083 33.868 48.555 0.424 0.305 0.437 

Correlate 2D 1086.4 100.01 0.01 52.625 31.541 47.138 0.474 0.284 0.425 

Phase cross 

correlation 
1085.9 99.97 -0.03 2.13 1.056 2.845 0.019 0.01 0.026 

Conclusions 

1. Phase cross correlation method with 1.056 s execution time for 111 frame images and 0.7 mm error 

over one metre is the best option to use for linear movement of a sensor bundle in a greenhouse 

environment. 

2. VO camera to surface distance changes for 500 ± 20 mm height considered in this study 

theoretically may result in VO errors in the range of –3.9% to +4.2%. 

3. To increase overall accuracy, it is recommended to add height measurement sensor for more 

accurate pixel to mm conversion; or to use object of known size in the view of VO camera. In the 

case of tree nursery seedling trays with cells of regular size could be used for that purpose. 
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