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Abstract. Phragmites australis (common reed) is a typical type of wetland vegetation, and is also considered an 

aggressive vegetation invader in the regional ecosystem. As common reed resources in Latvia are large, they can 

be used to produce solid biofuels. The stem of the reed is like a natural pipe. It is already used in the production 

of cocktail straws. However, there is a much wider range of uses, such as toy components etc. Such applications 

require that the reed stem does not flatten after cutting. Likewise, the end of the stem must be free of sharp edges 

and smooth. The maximum allowable force for fixing reeds in the gripping mechanism and the stiffness of the 

reed stem were determined. The parameters obtained were used to determine the dynamic parameters of the 

gripper. The reed stalk is essentially a flexible cylinder that creates an oscillating transient process during fixation. 

This reduces the clamping force and can cause failures at the beginning of cutting. This paper presents a dynamic 

mathematical model for the gripping mechanism, evaluating the flexibility of the reed stem and the friction of the 

mechanism. The differential equation of motion was obtained using the Lagrange equations. To create a 

mathematical model, it is necessary to know various parameters of the mechanism. In this study, the geometric 

parameters of the mechanism, the moments of inertia of the moving parts, the stiffness of the reed and the friction 

coefficient were determined. These values will be used in the future to simulate the operation of the mechanism in 

various operating modes.  
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Introduction 

Common reed is an undemanding and highly productive aquatic grass widely available worldwide 

due to its invasive spread [1]. In Europe, reed is one of the most abundant aquatic plants and embodies 

a major element of the lake flora [2]. Common reed is a native perennial plant growing on wetlands, 

which is usually used as household feedstock, for thatching roofs and basking mats [3], wall coverings, 

cocktail straws, Christmas decorations and kids’ toys [4]. In order to cut the reeds into the lengths 

required for cocktail straws, a mechanism is needed to move the reeds to the cutting mechanism.  

The aim of this study is to create a differential equation of the dynamics of the clamping mechanism 

and to determine the necessary parameters for simulation of the mathematical model. 

Materials and methods 

When it comes to industrial robots, they require special end-effectors called tools. End-effectors 

can be divided into two major categories, hands and grippers. Hands are multi-finger end-effectors with 

more than one degree of freedom per finger (Fig. 1 (a) and (b)) and grippers usually have 2 or 3 fingers 

with one degree of freedom, as shown in Table 1. Hands are designed for general purpose grasps while 

grippers are designed for more specific tasks [5]. 

a)

 

b)

 

Fig.1. Hands are multi-finger end-effectors: a – DLR hand HIT; b – ROBOTIQ Adaptive 3-finger 

In most cases, grippers are intended for the implementation of some mechatronic process. 

Depending on the tasks and work environment, they are designed to perform general operations such as 

taking, placing or moving products. The tendon-driven gripper [6] has high adaptability but low wear 

resistance and load capacity, while the worm gear mechanism [7] has high load capacity but low speed 

and adaptability. 
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Cylindrical surface gripping mechanisms, in terms of the movement type of the fingers, are divided 

into two categories (Table 1). Parallel-jaws grippers have the simplest design among grippers, and 

different designs of them are used in industrial purposes [8]. The 2-finger radial gripper is a compact 

mechanism designed for use in space-constrained environments. The 3-Finger Angular Gripper is 

designed for safe gripping of irregular shapes in compact spaces because the fingers pivot inward. The 

2-finger parallel gripper is suitable for places where high precision is required, as the linear movement 

makes it easy to control. The 3-finger centric gripper provides high alignment accuracy for cylindrical, 

spherical, or uneven parts. 

Table 1 

Gripping mechanisms 

Angular or radial grippers Parallel or centric grippers  

    
SCHUNK DRG  

2-finger radial 

gripper 

SCHUNK SGW 

3-finger angular 

gripper 

SCHUNK SPG 

2-finger parallel 

gripper 

SCHUNK PZH-plus 

3-finger centric 

gripper 

Most usually grippers have two fingers with rotational motions. The system made of a two finger 

gripper and the work piece is statically indeterminate, if the gripper has three fingers, the system is 

statically determinate [9].  

In previous studies [10], a gripping mechanism was developed to secure the cane in the cutting 

device (Fig. 2). The study found that the developed reed straw gripping mechanism ensures non-

destructive fixing of the straw during reed cutting, if the compressive force generated by the elastic 

clamps creates sufficient friction force. 

  

Fig. 2. Common reed gripping mechanism:  

1 – drive mechanism; 2 – drive gear; 3 – driven gear;  

4 – ratchet-wheel; 5 – common reed section;  

6 – lever; 7 – housing 

Fig. 3. Kinematic parameters of the 

gripping mechanism: 1 – drive gear;  

2 – driven gear; 3 – lever; 4 – brake 
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In this study, a differential equation of motion of the gripping mechanism was developed and the 

necessary quantities for the development of a mathematical model of the mechanism’s dynamics were 

determined. Considering that the reed, which is held in the jaws of the mechanism, is flexible, the 

clamping mechanism corresponds to a second-order dynamic system. This means that oscillations of the 

mechanism jaws will occur during the clamping process, which may lead to unstable fixation of the reed 

stem.  

To determine the parameters of the clamping process, a mathematical model of the mechanism was 

developed. To mathematically describe the mechanism, the Lagrangian function L was used (1) [11]: 

 L T U= − , (1) 

where  T – kinetic energy of the system; 

 U – potential energy of the system. 

The differential equation of the system is obtained using equation (2): 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑
.

1
) −

𝜕𝐿

𝜕𝜑1
 =  𝑄𝑖, (2) 

where  𝜑1 – generalized coordinate;  

 𝜑
.

1 – generalized velocity; 

 𝑄𝑖 – generalized force. 

Considering that the drive is powered by an electric motor, the generalized coordinate is chosen as 

the rotation angle of the driving gear φ₁ (Fig. 3). To determine the Lagrangian function of the system, 

the system’s kinetic and potential energy was calculated. The total kinetic energy of the rotating parts 

can be determined as the sum of the energies of the individual parts:  

 1 2 33T T T T= + + ,   (3) 

where  T₁ – kinetic energy of the driving gear 1; 

 T₂ – kinetic energy of the driven gear 2; 

 T₃ – kinetic energy of the lever 3 (Fig. 3). 

The elements of the mechanism are in rotational motion; therefore the kinetic energy is determined 

by equation (4): 

𝑇1 =  𝐼1

𝜑1
2

.

2
; 𝑇2 =  𝐼2

𝜑2
2

.

2
; 𝑇3 =  𝐼3

𝜑3
2

.

2
, (4) 

where 𝐼1, 𝐼2, 𝐼3 – moments of inertia of the rotating bodies; 

 𝜑
.

1; 𝜑
.

2; 𝜑
.

3 – angular velocities of the rotating bodies.  

The kinetic energies of the individual parts of the mechanism are reduced to the driving gear, which 

is connected to the motor shaft. By evaluating the kinematic parameters of the mechanism according to 

the scheme shown in Figure 3, an equation (5) for calculating the total kinetic energy was obtained: 

𝑇 =  [
𝐼1

2
 +  

𝐼2

2
(

𝑅1

𝑅2
)

2

 +  3
𝐼3

2
(

𝑅1

𝑅2
⋅

𝑅6

𝑅3
)

2

] 𝜑
.

1
2, (5) 

where  𝑅1, 𝑅2, 𝑅3, 𝑅6, - corresponding radii of rotating parts (Fig. 3). 

The potential energy is generated by the elasticity of the reed stem. It is determined by formula (6): 

𝑈 =  𝑘
𝑥2

2
 (6) 

where  𝑥 – deformation of the stem during compression; 

 𝑘 – stiffness coefficient of the reed. 

The stem deformation depends on the rotation angle of the presser. Expressing the reed deformation 

x as a function of the driving gear rotation angle and inserting it into formula 6, the potential energy 

expression (7) is obtained:  
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𝑈 =  𝑘
𝜑1

2

2
(
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𝑅2𝑅3
)

2

 (7) 

Substituting into equation (1), the Lagrangian function L is obtained: 
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)
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2

 (8) 

The generalized force Qᵢ is determined by assigning a virtual displacement δᵢ and calculating virtual 

work. Considering that the virtual work is done by the torque of the motor and the force of viscous 

friction, the generalized force is calculated by formula (9):  

𝑄𝑖  =  𝑀𝑑 − 𝑐𝜑
.

1𝑅5
2 (

𝑅1

𝑅2
)

2

 (9) 

where 𝑐 – coefficient of viscous friction; 

 𝑀𝑑 – driving torque of the motor. 

Inserting the obtained quantities L and Qi into equation (2) and performing differentiation, the 

differential equation of the mechanism 10 was obtained: 

(𝐼1 +  𝐼2 (
𝑅1

𝑅2
)

2

 +  3𝐼3 (
𝑅1𝑅6

𝑅2𝑅3
)

2

) ⋅ 𝜑
..
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1

(
𝑅1𝑅6

𝑅2𝑅3
𝑅4)

2

− 𝑐𝜑
.

1𝑅5
2 (

𝑅1

𝑅2
)

2

. (10) 

Assuming that the basic differential equation of rotation is 𝐼𝑟𝑒𝑑𝜑
..

1 =  ∑ 𝑀𝑖
𝑛
𝑖 = 1 , we can determine 

the reduced moment of inertia Ired of the mechanism and the moment of active forces acting on the shaft 

of the driving motor: 

𝐼𝑟𝑒𝑑 =  𝐼1 +  𝐼2 (
𝑅1

𝑅2
)

2
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𝑅2𝑅3
)

2

; (11) 

∑ 𝑀𝑖

𝑛
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(
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𝑅4)

2

− 𝑐𝜑
.
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2 (

𝑅1

𝑅2
)

2

 (12) 

These quantities are essential for the formulation of a mathematical model describing the 

mechanism dynamics, with consideration of the electric motor parameters.  

To create a mathematical model, it is necessary to determine the geometric parameters of the 

gripping mechanism and the elasticity coefficient of the reed stem, the moment of inertia, as well as the 

displacement of the pawl depending on the angle of rotation of the pinion. 

In determining the elasticity coefficient, the authors assumed that the reed behaves like a spring 

during the compression process. Hooke’s law was used to determine the elasticity coefficient of the 

spring. In previous studies [10], the compressive strength of reed rods in the transverse direction was 

determined depending on the diameter of the stem. 

 

 

Fig. 4. Common reed section before loading and points of application of force F and reactions R [10] 

Flat mount 

R 

F 

R 

Mounting with cutout 
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The specimens were placed between the fixtures, one of which was flat and the other formed with 

a cut-out at an angle of 60 degrees, Fig. 4. In this way, the distribution of forces in the jaws of the 

developed mechanism was simulated. The elastic deformation region was estimated from the force-

deformation diagrams obtained in the experiment. The elastic coefficient of the reed was calculated from 

the obtained results. 

The mechanism design was created using the Solid Edge computer program. The moments of inertia 

of the moving parts were determined using Solid Edge tools. 

Results and discussion 

The stiffness of the reed was determined from the linear region of the force-deformation curves [10] 

using equation: 

 2 1

F F
k

h h h


= =

 −
,   (13) 

where F – pressing force at the end of linear region; 

 h2 – position of testing machine grips at the end of pressing; 

h1 – position of testing machine grips at the beginning of pressing. Initial force is assumed 

F0 = 0.  

Transverse strength of reed stalks was assessed with using an Instron 5969 universal testing 

machine. The measurement error of displacement is 0.1%. Average force measuring accuracy did not 

exceed ± 0.5%. The reed stem outer diameters were measured using a digital calliper with resolution 

0.01mm. The variation of the diameters of each group of the samples did not exceed ± 0.2mm [10].  

The results obtained are summarized in Table 2. Evaluation of the data indicates that the stiffness 

increases with increasing the reed diameter. This behaviour can be attributed to the fact that, as the reed 

diameter increases, the stem wall thickness also tends to increase proportionally, leading to increased 

resistance to deformation in the radial direction and, consequently, a higher stiffness. 

Table 2 

Stiffness of reed stems (kN·mm-1) 

Diameter of reed, mm 6 ± 0.2 7 ± 0.2 8 ± 0.2 9 ± 0.2 10 ± 0.2 

Position before 

compression h1,, mm 
6.1 ± 0.1 4.0 ± 0.1 4.5 ± 0.1 3.5 ± 0.1 3.6 ± 0.1 

Position after compression 

h2,, mm 
5.6 ± 0.1 3.5 ± 0.1 4.0 ± 0.1 3.0 ± 0.1 3.1 ± 0.1 

Loading force, N 23.1 ± 1.2 24.0 ± 1.3 28.0 ± 1.2 36.0 ± 1.2 35.1 ± 1.3 

Stiffness, N·mm-1 46.2 ± 2.3 48.0 ± 2.5 57.1 ± 2.8 72.6 ± 3.5 70.0 ± 3.4 

Microsoft Excel is used to carry out the statistical analysis of the results. Analysis of variance 

(ANOVA) was used to analyse the differences between the groups. The results of the statistical analysis 

of the data are summarized in Table 2. The null hypothesis that the average applied force did not depend 

on the reed diameter was rejected and the alternative hypothesis that the average applied force depends 

on the reed diameter was accepted. 

Table 3  

Analysis of variance (ANOVA) 

Source of variation SS df MS Ffact. P-value Fcrit. 

Between groups 6482.116 1 6482.116 88.65523 0.000 5.317655 

Within groups 584.928 8 73.116 – – – 

Total 7067.044 9 – – – – 

After performing the analysis, it can be concluded that Ffact = 88.65523 > Fcrit = 5.317655, then with 

a probability of 95% the null hypothesis can be rejected. The alternative hypothesis that the stiffness of 

reed stems depends on the reed diameter can be accepted. 
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The graph in Figure 5 indicates that the reed stiffness depends linearly on the reed diameter. The 

coefficient of determination is R2 = 0.88. This is large enough to use this relationship in a mathematical 

model simulation. 

 

Fig. 5. Relationship between the stiffness and the diameter of reed stems 

The design of the gripping mechanism was created in Solid Edge. The model of the gripper is 

intended to be made using 3D printing of ABS material. The physical properties of the gripper parts 

were determined using data from the Solid Edge model (Table 4). 

Table 4 

Physical properties of gripper mechanism parts 

Density, g∙cm-3 1.024 1.024 1.024 1.024 

Mass, g 29.2 24.4 1.9 5.2 

Mass moment of 

inertia, g∙cm-2 
306.1 313.2 2.4 5.7 

Volume, cm3 28.56 23.83 1.82 5.11 

Surface area, 

cm2 
142.39 131.63 12.83 32.93 

Elements of the 

gripping 

mechanism 

  
 

 

 

ratchet-wheel driven gear pawl drive gear 

To develop a mathematical model, it is necessary to establish the relationship between the rotation 

angle of the driven gear and the displacement of the oppressor, which represents the reed deformation x 

(Fig. 3). This can be done in several ways.  

The geometric transformation of the gripper can be described either analytically, using the 

kinematic equations of the mechanism, or empirically, by establishing a relationship between reed 

deformation and the gear rotation angle based on a Solid Edge model. In this study, the dependence of 

reed deformation on the gear rotation angle was determined through parametric modelling conducted in 

the Solid Edge software environment (Fig.7).  

The derived regression equation is applicable for the development of the mathematical model. The 

coefficient of determination, R2 = 0.9956, indicates a high level of correlation, ensuring the model’s 

validity in representing the actual system behaviour. Future research will extend this work by developing 

a comprehensive dynamic model of the gripper mechanism, incorporating its interaction with the drive 

motor to capture the full system behaviour. 
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Fig. 7. Deformation of the reed stem depending on the angle of rotation of the driven gear 

Conclusions 

1. By applying the Lagrangian method, the equations of motion were derived for use in the dynamic 

model of the reed gripper, enabling the analysis of the mechanism’s motion while considering 

elastic components, frictional forces, and the inertia of the system.  

2. The study identified the necessary parameters for developing a mathematical model: the elasticity 

coefficient of the reed, the moments of inertia, and the deformation of the reed depending on the 

angle of rotation of the gear. 

3. The coefficient of elasticity of reed depends on the diameter of the stem and varies from 0.047 to 

0.070 kN∙mm-1. 

4. The reed deformation changes by 7 millimetres when the gear rotation angle changes by 6 degrees. 

This is enough to be able to fix reeds with a diameter of 6 to 10 mm in the gripper. 

5. The obtained equations and parameters allow to develop a gripper dynamics model, perform 

simulations, and determine the dynamic parameters of the mechanism. 
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