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Abstract. In order to raise its absorbency before feeding, or preparation of forage mixtures, it is necessary to 

crush or flatten the grain. A classic method of the grain preparation for feeding is its crushing by means of 

hammer crushers. There are presented the results of simulation of the propagation of the elastic and the plastic 

deformations in the individual grain as a plate of variable thickness under the impact of the hammer. The method 

of finite elements is used to compose a computation scheme taking into account the elastic and the plastic 

deformations, and stresses. There are the crushing zones of the grain defined at the collision with different initial 

velocities.  
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Introduction 

At present concentrated fodder is widely used in the intensive stock farming on the basis of cereal 

crops. In order to raise its absorbency before feeding, or preparation of forage mixtures, it is necessary 

to crush or flatten the grain. A classic method of the grain preparation for feeding is its crushing by 

means of hammer crushers.  

In the crushing chamber the material to be crushed is subject to repeated impact from the side of 

the operating tools of the crusher, changing the granulometric composition and shape of the circulating 

particles. The efficiency of the crushing process depends on: the way how the material is supplied to 

the hammer rotor, organisation of the air dispersion cycle inside the crushing chamber, the speed of 

the rotor hammers and withdrawal of the ready product from the crushing zone. The impact of these 

factors upon the crushing process of grain is the object of investigation by many scientists:  

V.P. Goryachkin, S.V. Melnikov, V.I. Syrovatka, etc. [1-3]. 

The process of impact crushing of individual grains using hammer crushers is accompanied by 

elastic and plastic deformations, which develop in a very short interval of time. In spite of the wide 

application of hammer crushers the issue concerning the theory of the propagation of the elastic and 

plastic deformations in the grain under impact has been studied insufficiently, there is no mathematical 

model of the disintegration process of the grain with respect to its shape, dimensions and elastoplastic 

properties. The purpose of this investigation is to develop a mathematical model of deformation 

propagation in an individual grain during impact crushing in the crusher. 

Materials and methods 

To solve the assigned task, the method of finite elements was used, applying it to the design 

diagram of the propagation process of the elastic deformation in a particle of the material to be 

crushed under impact, as well as detection of the transition moments into the plastic stage of 

deformation [4-6]. When building the model, we made an assumption that an individual grain (or its 

part) is a plate of variable thickness. The values of dimensions of separate regions of grains used in the 

numerical calculations were determined by means of a microscope. Collision of a grain with the 

hammer is companied by instantaneous constraints, which restrict the movement of the knots of the 

mechanical system. The initial relative velocities of all the points of the grain are the same and equal 

to the speed of the hammer in absolute motion (as this is a short-time collision, the movement of the 

hammer may be considered as translational). The knots which instantly stop, lose the degrees of 

freedom, therefore generalised movements {q} corresponding to these knots are equal to zero. If from 

the matrix of rigidity and mass rows and columns corresponding to these generalised movements are 

crossed out, and from the vectors of the generalised coordinates and forces – the rows of these 

movements, then for the truncated system of equations we will obtain a matrix equation of free 

oscillations with positively defined matrices of masses [M] and rigidities [K] formed by joining the 

corresponding matrices of flat triangular finite elements of different width [5], i.e.: 
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 [ ]{ } [ ]{ } { }0=+ qKqM && , (1) 

with the initial conditions  

 { } { }0)0( qq && = , (2) 

 { } { }0)0( =q . (3) 

The algorithm of their formation is based on the topology of finite elements and represents a 

separate task to be solved in a numerical way in a packet of applied programmes [10]. 

The first part of the equation (1) are the generalised forces which depend on time and are equal to 

zero because they execute no constraint reactions applied at the point of contact, upon the possible 

generalised operation movements, and there are no other forces. The initial conditions for the 

generalised velocities (2) are defined as projections of the initial velocity of individual grain on axes x, 

y, i.e. all the even generalised velocities are equal to υy(0) but all the odd ones – to υx(0). Before the 

start of the account of the generalised movements we assume a condition of equilibrium, therefore the 

initial movements (3) are zero. At the first solution stage of equations (1) we will regard the coefficients 

of the matrix as constants, i.e. we suppose that the grain is an elastic body ignoring the plastic deformations. 

For positively defined matrices of masses and rigidities decomposition of the motion of the mechanical 

system is possible according to proper forms of oscillations. We will search a partial solution of the system 

(1) like:  

 { } { }q A pt= sin . (4) 

where {A} – a vector-column of amplitude values; 

 
p – frequency of the proper oscillations of the mechanical system.  

Substituting (4) into equation (1) after coefficient equalisation at function sin pt, we obtain:  

 [ ] { } { }0][][2 =+− AKMp . (5) 

A homogeneus matrix equation has not only a zero solution. In order to obtain non-zero solutions, 

it is necessary that the determiner of the matrix turned into zero. That is why there are proper values of 

the characateristic matrix [K]
-1

[M]. These proper values p
-2 

determine the proper oscillation 

frequencies of the system described by the matrix differential equation (1) and the forms of its proper 

oscillations.The system of algebraic equations (5) has zero solutions {A} only if the determiner of this 

system is equal to zero. System (5) can be reduced to the form:  

 }]{[
1

}{][][
2

1
AE

p
AMK =−  (6) 

where [E] is a unitary matrix of the same order as [K] and [M]. 

Then p
-2

 are the proper values of the matrix [K]
-1

[M] but the amplitude values {A} are the proper 

vectors of this matrix. To compute the proper vectors {A}i and proper frequencies pi, standard 

subprogrammes were used in the Fortran language: NROOT and EIGEN which operate 

simultaneously and are based on the Jacobi rotation method [7]. Index i is the number of the proper 

frequency of oscillations of the mechanical system i = 1, 2…, n. 

The forms of oscillations{A}i, arranged in an ascending order of frequencies p1, …, pn, constitute 

the matrix of the forms of oscillations:  

 [ ]nAAA }...{}{][ 1=  (7) 

where n  – the number of the freedom degrees of the mechanical system which is equal to the 

quantity of proper frequencies of oscillations.  

The proper forms of oscillations [8; 9] have an orthogonality property; using it we transform 

equation (1) to the main coordinates. Multiplying it by the matrix [A]
T
 and by the unitary matrix 

[E]=[A][A]
-1

 we obtain:  
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 }0{}{]][][[][}{]][][[][
11 =+ −−

qAAKAqAAMA
TT

&&  (8) 

The order of the matrices is determined by the quantity of knots when broken into finite (final) 

elements. The number of knots multiplied by 2 is equal to the dimension of the matrices M and K. In 

the given examples of estimates n = 102...104. 

Let us mark: 

• main matrix of masses as 

 

[ ] [ ] [ ] [ ] [ ]
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• main matrix of rigidities [8] as 

 

[ ] [ ] [ ] [ ]


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\
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• main generalised coordinates  

 
{ } [ ] { }qAu

1−= ; 

• main generalised accelerations 

 
{ } [ ] { }qAu &&&&

1−= . 

Then system (8) assumes the appearance:  

 [ ]{ } [ ]{ } { }0=+ uKuM GG
&& . (9) 

As the main matrices of masses and rigidities are diagonal, the system (9) breaks into separate 

equations of the appearance:  

 0=+ iGiiGi ukum && . (10) 

The solutions of which we write down as:  

 tpCtpCu iiiii sincos 21 += , (11) 

where 
Gi

Gi
i

m

k
p =  are proper frequencies of oscillations of the system.  

 Let us define the arbitrary constant of integration  

 ii CC 21 ,  by initial conditions (2), (3). 
iC1
 = 0; [ ] { }0
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After this, returning to the initial coordinates, we obtain a solution of differential equations of the 

movement of the mechanical system discussed: 

 { } [ ] [ ] { }0
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\
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p

tpAq
i

i
&
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where the diagonal matrix contains values, reverse to the proper frequencies, on the main 

diagonal. 
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Formula (12) indicates how nodal displacements change in time; by them the relative 

deformations are determined in expression (14). If checking the system (1), nontruncated matrices [M] 

and [K] were used in it, then in the first part opposite the constraint movements (i.e. in the knots that 

are in contact with the hammer) we will obtain the values of reactions of the external links. 

Results and discussion 

A packet of applied programmes [10] has been worked out, implementing the described 

computing algorithm of the movement of the system and the interior tensions arising in the finite 

elements of the plate.  

The intensity of stresses σu  in a planar stressed state is computed according to formula [11]: 

 222 3 xyyyxxu τσσσσσ ++−= , (13) 

where σx, 
σy, 
τxy – the components of stresses of the material in a planar stressed state, 

respectively, the normal stresses along the axes x and y, and the tangential stress τxy.  

The intensity of the relative deformation εu [11]:  

 2222

2

3
)()()(

3

2
xyzyzxxyu γ+ε−ε+ε−ε+ε−ε=ε , (14) 

is computed through εx, εy, γxy
 
– deformation components of the finite element. 

For the other elastic state a correlation called the generalised Hook’s law is true [11] 

 uu Eε=σ . 

In order to define the parameters of the movement of the system and internal stresses arising in 

the finite elements of the plate (the grain) and to obtain graphic dependencies on the basis of the model 

described above, a computation algorithm has been developed. The computation results of the stresses 

are presented in Fig. 1. 

 

 

Fig. 1. Dependence of stress σ on time for four elements of grain at the collision velocity  

υ0 = 75 m·s
-1

, the elasticity module of the material E = 500 MPa (on the left  

the numbers of elements and knots of the grain are shown) 

The obtained solutions of the oscillation equations of the grain particles under impact without 

taking into consideration the elastic deformation produce overestimated values of stresses in the 

elements and a lesser than the real collision time [1]. Therefore, to raise the accuracy of the 

computation model, we will use an assumption of the elasticity theory [9]. Transition from the elastic 

state into a plastic state occurs when the value σu, called the intensity of stresses, reaches the yield 
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limit σT. In the plastic region the link between the intensity of stresses and deformations can be 

presented more conveniently in the form of the generalised Hook’s law: 

 uCu E ε=σ , (15) 

where EC – regarded as the function of deformation εu and is called the secant modulus of 

elasticity
u

u
CE

ε
σ

= .  

The secant modulus of elasticity is defined according to an experimental diagramme of a uniaxial 

stressed state for the current values σu  and εu [9]. We will write the computational correlations for the 

deformation and stress components in the plastic region as:  
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where 
EEE Cп

yx

3

)1(211
;

3

µσσ
σ

+
−=

+
= . 

For the discussed cases of the collision velocities there are zones of the individual grain built in 

Fig. 2 and Fig. 3, subject to plastic deformation σu > σT (σT = 20 MPa), and a zone in which the 

intensity of stress reached the strength limit σu > σB, where σB = 27.6 MPa. 

 
Fig. 2. Regions of maximal propagation of the plastic deformation ( ) and regions 

reaching the destructive deformations ( ): a – υ0 = 25 m·s
-1

 at the moment t = 3.5·10
-5 

s;  

b – υ0 = 75 m·s
-1

 at the moment t =4.5×10
-5

 s; c – υ0 =125 m·s
-1

 at the moment t  = 5·10
-5 

s 

a) b) 

c) 
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Fig. 3. Scheme of the propagation areas of the plastic deformation ( ) and destructive 

deformation ( ) at various impacts upon the grain: a – υ0 = 25 m·s
-1

;  

b – υ0  = 75 m·ss
-1

; c – υ0  = 125 m·s
-1

 

In order to reach a positive effect from deeper crushing of grains in the plane of the minimal 

section, a scheme of a crusher is proposed withdrawing the grains from the crushing chamber along 

the tangent line towards the path of the hammers with a return in a perpendicular direction so that the 

grains, while sliding along the wall of the exit, are oriented in relation to the hammer in a plane with a 

lesser section [12]. 

Conclusions 

1. On the basis of the method of finite elements there is produced a mathematical model of the 

propagation of the elastic and plastic deformations in the individual grain under the impact of the 

hammer as upon a plate of variable thickness.  

2. The obtained deformation propagation regularities indicate that under the impact effect across the 

individual grain more efficient for crushing is the impact in the section of the lesser area, which 

can be explained by the bending deformation of the grain like a beam with a lesser moment of 

inertia of the cross section. In this case the time of collision is also slightly shorter. Under impact 

along the grain, propagation of deformation is approximately equal in both cross sections, which 

corresponds to the rod model of expansion-compression.  

3. In order to reach a positive effect from deeper crushing of grains in the plane of the minimal 

section, a scheme of a crusher is proposed withdrawing the grains from the crushing chamber 

along the tangent line towards the path of the hammers with a return in a perpendicular direction 

a) 

b) 

c) 
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so that the grains, while sliding along the wall of the exit, are oriented in relation to the hammer in 

a plane with a lesser section.  
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