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Abstract. In order to raise its absorbency before feeding, or preparation of forage mixtures, it is necessary to
crush or flatten the grain. A classic method of the grain preparation for feeding is its crushing by means of
hammer crushers. There are presented the results of simulation of the propagation of the elastic and the plastic
deformations in the individual grain as a plate of variable thickness under the impact of the hammer. The method
of finite elements is used to compose a computation scheme taking into account the elastic and the plastic
deformations, and stresses. There are the crushing zones of the grain defined at the collision with different initial
velocities.
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Introduction

At present concentrated fodder is widely used in the intensive stock farming on the basis of cereal
crops. In order to raise its absorbency before feeding, or preparation of forage mixtures, it is necessary
to crush or flatten the grain. A classic method of the grain preparation for feeding is its crushing by
means of hammer crushers.

In the crushing chamber the material to be crushed is subject to repeated impact from the side of
the operating tools of the crusher, changing the granulometric composition and shape of the circulating
particles. The efficiency of the crushing process depends on: the way how the material is supplied to
the hammer rotor, organisation of the air dispersion cycle inside the crushing chamber, the speed of
the rotor hammers and withdrawal of the ready product from the crushing zone. The impact of these
factors upon the crushing process of grain is the object of investigation by many scientists:
V.P. Goryachkin, S.V. Melnikov, V.I. Syrovatka, etc. [1-3].

The process of impact crushing of individual grains using hammer crushers is accompanied by
elastic and plastic deformations, which develop in a very short interval of time. In spite of the wide
application of hammer crushers the issue concerning the theory of the propagation of the elastic and
plastic deformations in the grain under impact has been studied insufficiently, there is no mathematical
model of the disintegration process of the grain with respect to its shape, dimensions and elastoplastic
properties. The purpose of this investigation is to develop a mathematical model of deformation
propagation in an individual grain during impact crushing in the crusher.

Materials and methods

To solve the assigned task, the method of finite elements was used, applying it to the design
diagram of the propagation process of the elastic deformation in a particle of the material to be
crushed under impact, as well as detection of the transition moments into the plastic stage of
deformation [4-6]. When building the model, we made an assumption that an individual grain (or its
part) is a plate of variable thickness. The values of dimensions of separate regions of grains used in the
numerical calculations were determined by means of a microscope. Collision of a grain with the
hammer is companied by instantaneous constraints, which restrict the movement of the knots of the
mechanical system. The initial relative velocities of all the points of the grain are the same and equal
to the speed of the hammer in absolute motion (as this is a short-time collision, the movement of the
hammer may be considered as translational). The knots which instantly stop, lose the degrees of
freedom, therefore generalised movements {g} corresponding to these knots are equal to zero. If from
the matrix of rigidity and mass rows and columns corresponding to these generalised movements are
crossed out, and from the vectors of the generalised coordinates and forces — the rows of these
movements, then for the truncated system of equations we will obtain a matrix equation of free
oscillations with positively defined matrices of masses [M] and rigidities [K] formed by joining the
corresponding matrices of flat triangular finite elements of different width [5], i.e.:
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[M Hg}+ [k Kq} =10} (1)

with the initial conditions
{a}=1{4,}. 2
{g9(0)}={o}. 3)

The algorithm of their formation is based on the topology of finite elements and represents a
separate task to be solved in a numerical way in a packet of applied programmes [10].

The first part of the equation (1) are the generalised forces which depend on time and are equal to
zero because they execute no constraint reactions applied at the point of contact, upon the possible
generalised operation movements, and there are no other forces. The initial conditions for the
generalised velocities (2) are defined as projections of the initial velocity of individual grain on axes x,
v, i.e. all the even generalised velocities are equal to v,(0) but all the odd ones — to v,(0). Before the
start of the account of the generalised movements we assume a condition of equilibrium, therefore the
initial movements (3) are zero. At the first solution stage of equations (1) we will regard the coefficients
of the matrix as constants, i.e. we suppose that the grain is an elastic body ignoring the plastic deformations.
For positively defined matrices of masses and rigidities decomposition of the motion of the mechanical
system is possible according to proper forms of oscillations. We will search a partial solution of the system
(1) like:

{q} ={A}sinpt. (4)

where {A} — a vector-column of amplitude values;
p — frequency of the proper oscillations of the mechanical system.

Substituting (4) into equation (1) after coefficient equalisation at function sin pt, we obtain:

- prm1+ 1K) {a}= (o}, 5)

A homogeneus matrix equation has not only a zero solution. In order to obtain non-zero solutions,
it is necessary that the determiner of the matrix turned into zero. That is why there are proper values of
the characateristic matrix [K]'[M]. These proper values p~ determine the proper oscillation
frequencies of the system described by the matrix differential equation (1) and the forms of its proper
oscillations.The system of algebraic equations (5) has zero solutions {A} only if the determiner of this
system is equal to zero. System (5) can be reduced to the form:

(KT [M1(A) = S [E)(A) (6)
p

where [E] is a unitary matrix of the same order as [K] and [M].

Then p are the proper values of the matrix [K]"'[M] but the amplitude values {A} are the proper
vectors of this matrix. To compute the proper vectors {A}; and proper frequencies p;, standard
subprogrammes were used in the Fortran language: NROOT and EIGEN which operate
simultaneously and are based on the Jacobi rotation method [7]. Index i is the number of the proper
frequency of oscillations of the mechanical systemi=1,2..., n.

The forms of oscillations{A},, arranged in an ascending order of frequencies p;, ..., p,, constitute
the matrix of the forms of oscillations:

[A]=[{A};..{A4},] )

where 7 — the number of the freedom degrees of the mechanical system which is equal to the
quantity of proper frequencies of oscillations.

The proper forms of oscillations [8; 9] have an orthogonality property; using it we transform
equation (1) to the main coordinates. Multiplying it by the matrix [A]" and by the unitary matrix
[EI=[A][A]" we obtain:
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[A] [M[ANAT g} +[A] [KI[AIAT (g} = {0} ®)

The order of the matrices is determined by the quantity of knots when broken into finite (final)

elements. The number of knots multiplied by 2 is equal to the dimension of the matrices M and K. In
the given examples of estimates n = 102...104.

Let us mark:

e main matrix of masses as
[MG]:[A]T[M] [A]:[ Mg, ]: Mg,
e main matrix of rigidities [8] as

[Kel=[AT K] [Al=) &

’

e main generalised coordinates

e main generalised accelerations

Then system (8) assumes the appearance:
v Ji§+ [K g = {0} ©)

As the main matrices of masses and rigidities are diagonal, the system (9) breaks into separate
equations of the appearance:

mGiI;ii + kGiui =0. (10)
The solutions of which we write down as:

u, =C, cospt+C,sinp;t, (11)

/ kg . _—

where p. = |—9- are proper frequencies of oscillations of the system.
Mg,

Let us define the arbitrary constant of integration

C,;,C,; by initial conditions (2), 3). C; =0; C,, = [L} [A] {4, }-

i

After this, returning to the initial coordinates, we obtain a solution of differential equations of the
movement of the mechanical system discussed:

i

\
{a}=[A]  sinps [i] [A] {60} (12)
\ P

where the diagonal matrix contains values, reverse to the proper frequencies, on the main
diagonal.
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Formula (12) indicates how nodal displacements change in time; by them the relative
deformations are determined in expression (14). If checking the system (1), nontruncated matrices [M]
and [K] were used in it, then in the first part opposite the constraint movements (i.e. in the knots that
are in contact with the hammer) we will obtain the values of reactions of the external links.

Results and discussion

A packet of applied programmes [10] has been worked out, implementing the described
computing algorithm of the movement of the system and the interior tensions arising in the finite
elements of the plate.

The intensity of stresses g, in a planar stressed state is computed according to formula [11]:

o, =\/Gf -0,0,+0, +371.,, (13)

where 0. 0y, Ty, — the components of stresses of the material in a planar stressed state,
respectively, the normal stresses along the axes x and y, and the tangential stress z,,.

The intensity of the relative deformation ¢, [11]:

2 3
auz\g\/(ay—sx)2+(8x—sz)2+(8y—8Z)2+2Y)2¢y ’ (14)

is computed through ¢,, &,, y,, — deformation components of the finite element.

For the other elastic state a correlation called the generalised Hook’s law is true [11]

o, =E¢g,.

In order to define the parameters of the movement of the system and internal stresses arising in
the finite elements of the plate (the grain) and to obtain graphic dependencies on the basis of the model
described above, a computation algorithm has been developed. The computation results of the stresses
are presented in Fig. 1.
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Fig. 1. Dependence of stress ¢ on time for four elements of grain at the collision velocity
vo=175 m-s'l, the elasticity module of the material E = 500 MPa (on the left
the numbers of elements and knots of the grain are shown)

The obtained solutions of the oscillation equations of the grain particles under impact without
taking into consideration the elastic deformation produce overestimated values of stresses in the
elements and a lesser than the real collision time [1]. Therefore, to raise the accuracy of the
computation model, we will use an assumption of the elasticity theory [9]. Transition from the elastic
state into a plastic state occurs when the value g,, called the intensity of stresses, reaches the yield
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limit or. In the plastic region the link between the intensity of stresses and deformations can be
presented more conveniently in the form of the generalised Hook’s law:

o, = Ecsu , (15)

where E. — regarded as the function of deformation ¢, and is called the secant modulus of
.. o,

elasticity Ec =—.

gu

The secant modulus of elasticity is defined according to an experimental diagramme of a uniaxial

stressed state for the current values g, and ¢, [9]. We will write the computational correlations for the
deformation and stress components in the plastic region as:

£, = %(Gx - o, )+ %(@ -o)

n

1 3
g, ZE(O'Y —,uax)+2—En(0y —0), (16)
21+ 1) 3
o ZTTW +E—Txy,
oc.+o
e o TitO L1 204w
3 E. E. 3E

For the discussed cases of the collision velocities there are zones of the individual grain built in
Fig. 2 and Fig. 3, subject to plastic deformation ¢, > oy (67 = 20 MPa), and a zone in which the
intensity of stress reached the strength limit ¢, > o, where o3 = 27.6 MPa.

Fig. 2. Regions of maximal propagation of the plastic deformation (/77/)) and regions
reaching the destructive deformations (1]): a — vy= 25 m-s' at the moment 7= 3.5-107s;

b —vo=75 m-s" at the moment r=4.5x107s; ¢ — vy =125 m-s™' at the moment ¢ = 5-10°s
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Fig. 3. Scheme of the propagation areas of the plastic deformation (/7)) and destructive
deformation (Jil]) at various impacts upon the grain: a— vy=25m-s™;
b-vy=75m-ss";c—vy=125m-s"

In order to reach a positive effect from deeper crushing of grains in the plane of the minimal

section, a scheme of a crusher is proposed withdrawing the grains from the crushing chamber along
the tangent line towards the path of the hammers with a return in a perpendicular direction so that the
grains, while sliding along the wall of the exit, are oriented in relation to the hammer in a plane with a
lesser section [12].

Conclusions

1.

On the basis of the method of finite elements there is produced a mathematical model of the
propagation of the elastic and plastic deformations in the individual grain under the impact of the
hammer as upon a plate of variable thickness.

The obtained deformation propagation regularities indicate that under the impact effect across the
individual grain more efficient for crushing is the impact in the section of the lesser area, which
can be explained by the bending deformation of the grain like a beam with a lesser moment of
inertia of the cross section. In this case the time of collision is also slightly shorter. Under impact
along the grain, propagation of deformation is approximately equal in both cross sections, which
corresponds to the rod model of expansion-compression.

In order to reach a positive effect from deeper crushing of grains in the plane of the minimal
section, a scheme of a crusher is proposed withdrawing the grains from the crushing chamber
along the tangent line towards the path of the hammers with a return in a perpendicular direction
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so that the grains, while sliding along the wall of the exit, are oriented in relation to the hammer in
a plane with a lesser section.
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