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Abstract. The dynamical system theory has been extensively used in the contemporary ecology. Such theory is 

used to describe biological systems and their main features, to predict their behaviour under certain conditions, 

to find suitable explanations to biological phenomena, etc. [1; 2]. One of the advantages of the mathematical 

design is that models can depend only on a small number of parameters, still possessing capacity to describe 

biological systems adequately [3]. There are several types of mathematical models that are used. The most 

commonly applied type of models is differential and difference equations that describe dynamics of populations 

of given species [4]. Such models can serve as powerful tools to describe theoretical features of dynamics of 

populations. However, detailed data that allow estimation of parameters for such models are not always available 

[3; 5]. Another type of models is developed via implementation of Markov chains that describe stochastic 

dynamics of populations of given species [6; 7]. Parameters of such models can be estimated based on census 

data on the number of species that are usually more available [3]. Obviously, such models incorporate stochastic 

nature of life environments and stochastic nature of regulation processes [8]. Here we show how differential 

models can be extended to describe both underlying deterministic population dynamics and stochastic transitions 

between the observed states. To perform our proposal approach we deal with the classic Lotka-Volterra equation 

for the dynamics of predator-prey system analysis. Assuming stochastic switching for some parameters we 

analyze this dynamical system as the ergodic Markov chain. Applying statistical approach jointly with 

MATHEMATICA, R, and MATLAB as the statistical software tools, we estimate the Markov transition 

probabilities and parameters of the steady-state stationary distribution. Our mathematical design can be used to 

explore both theoretical features of mathematical models and their compliance with the real data.  

Keywords: dynamical systems, stochastic switching, Lotka-Volterra equations. 

Introduction 

Dynamical system theory has been successfully applied to describe various biological systems, to 

predict and explain their behavior [1; 3]. Commonly used mathematical models are deterministic 

difference and differential equations. However, during the past years both theoretical biologists and 

practitioners have claimed that deterministic models do not necessarily describe biological systems 

properly and further investigation was needed [9-11]. One of the obvious improvements is 

consideration of the stochastic nature of biological systems and their habitats [9; 12]. Stochastic 

dynamics of biological systems has been observed in practice [8; 13] and various approaches for 

modeling have been offered [12]. Usually such models are assumed to be memoryless or markovian 

[12]. Markovian models are used to describe stochastic transitions between the finite number of 

system’s states. The advantage of such models is that their parameters can be estimated based on 

census data which are usually more available [3]. Moreover, stochastic switching between several 

states of biological system is observed in practice [13]. Here we describe how deterministic 

differential models can be extended to incorporate the stochastic nature of the biological systems and 

capture both underlying deterministic dynamics and stochastic transitions between several observed 

states. We use classic predator-prey Lotka-Volterra equations and incorporate stochastic switching of 

the model parameters. Lotka-Volterra equations are a well-known model that was extensively studied 

and improved [14], and used to describe real-world data [15]. However, some criticism of 

deterministic Lotka-Voltera system was also proposed and further improvements were offered 

[10; 16]. We analyze the system as the ergodic Markov chain and apply statistical modeling jointly in 

MATHEMATICA, R and MATLAB to estimate Markov transition probabilities and steady-state 

distributions. Our mathematical design can be used to explore both theoretical features of 

mathematical models and their compliance with the real data. 

Model description 

Lotka-Volterra deterministic differential equations are commonly used to describe predator-prey, 

competition and other interactions between two populations. Throughout the paper we use the 

following form of the equations 
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where x1 is the total number of predator species, x2 is the total number of prey species. Terms a1 

and a2 describe propagation of species, terms b11 and b21 describe completion within same populations, 

terms b12 and b22 describe interaction between two populations.  

Consequently, parameters a1, a2, b11, b21 and b22 are chosen to be positive and parameter b12 is 

chosen to be negative. Deterministic Lotka-Volterra system has four equilibrium states, of which we 

are interested in stable focus that corresponds to stable coexistence of two populations: 

 

Fig. 1. Phase plot for deterministic Lotka-Volterra system with stable focus 

Location of the focus depends on the chosen parameters of the system and is given by the formula  
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where we assume that b11b22 – b12b21 ≠ 0.  

The parameters of the model that are used in the formula have a definite meaning, i.e. a1 and a2 

are the rates at which predator and prey species propagate, etc. These parameters are determined by 

internal and external factors for two populations. Here we assume that external factors, such as 

weather conditions or human interference possess stochastic nature. For the sake of simplicity, we 

assume that external factors can be only in one of the two states, switching between these two states at 

random moments in time. That is, we assume that the parameters of the model switch between two 

following sets of values: 

Table 1 

Two sets of possible values of system parameters 

Set 1 Set 2 

a1= A1, a2= A2, 

b11= B11, b21= B21, 
b22= B22, b12= B12 

a1= C1, a2= C 2, 

b11= D11, b21= D21, 
b22= D22, b12= D12 

If at the first moment the system was described by Set 1, after some time it switches to Set 2, then 

again to Set 1 and so on. Obviously, between the switching moments the system is non-random, it is 

described by deterministic Lotke-Voltera model and has stable focus as one of the equilibrium states. 

Thus, modeling used is described by the following scheme: 
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Table 2 

Modeling scheme  

Step1 Step 2 Step 3  Step 4 … 

Solve deterministic 

Lotka-Volterra 

equation with 

parameters from 

Set 1 

Change 

parameters from 

Set 1 to Set 2 

Solve deterministic 

Lotka-Volterra 

equation with 

parameters from 

Set 2 

Change 

parameters from 

Set 2 to Set 1 … 

 
 

Fig. 2. Phase plot for different number of switching times (from left to right: 5 switchings, 16 

switchings, 100 switchings)  

“Fig. 2” shows phase plots for increasing number of switching times (with same set values). It can 

be clearly seen that equilibrium state jumps between two points and system moves toward current 

equilibrium state between the switching times. Time between switching is assumed to have 

exponential distribution with parameter c: 
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The average time between the moments of switching is equal to c (inverse of the coefficient in the 

exponent). We assume that mean time c is large enough so that the system has time to reach small 

epsilon region of the equilibrium states. That is, c >> T where T is relaxation time of the system and 

the system spends most of the time near equilibrium states. 

Definition of the Markov chain 

We define states of the Markov chain in the following manner. We choose two rectangle regions 

around the equilibrium states and define Markov chain states as the number of the region: 
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where r is a location of the system, Π1 is the first rectangle and Π2 is the second rectangle (Fig. 3). 

 

Fig. 3. Regions that define Markov chain states: region 1 = area inside left rectangle; 

 region 2 = area inside right rectangle 
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Markov chain states are defined as the number of the region when the system is located at a 

stationary regime. That is, states of the Markov chain are defined only when the system reaches 

stationary mode. The idea behind such definition is as follows. If the system with described switching 

is observed during a long period of time, stationary regime should be reached. We record locations of 

the system with time intervals equal to c, assuming that the system is observed in discrete moments in 

time. As a result of the modeling with switching moments we obtain the sequence of the Markov chain 

states  

 ...1,3,1,1,3,1,2,1,3,1,3,2,3,3,1  (5) 

The obtained sequence form the Markov chain properties of which can be studied via modeling. 

Modeling procedure 

The system depends on the following. 

S1) Parameters of the Lotka-Volterra system a1, a2, b11, b21, b22 and b12. 

S2) Rectangles Π1, Π2 that define regions on phase plot and respective Markov chain states 

(“Fig. 3”). 

S3) Average time c between switching (check formula 3) 

Modeling of the system depends on the following. 

S4) Values chosen in S1)-S3) 

S5) Time step value dt used for modeling (it should be dt << c so that the system has time to 

reach epsilon-region of the equilibrium state) 

S6) Number of switching moments N. 

As a result of modeling the sequence of the Markov chain states (formula 5) are obtained and can 

be used to estimate transition probabilities: 
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Probabilities are calculated as follows 
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where nij is the total number of transactions from state i to state j in the sequence (5). 

In addition, empirical distributions of x1 and x2, and two-dimensional distribution of (x1,x2) at the 

switching moments can be obtained and investigated. 

Modeling results 

Here we present the modeling results. The modeling procedure is as follows. First we choose two 

sets of values for system parameters, average time between the switching moments c, rectangles Π1, 

Π2, time step dt, number of the switching moments N. Next we generate N time intervals that have 

exponential distribution and sum those up to get the total modeling time. Third, we simulate the 

system, switching parameters between sets as long as the time reaches the next switching interval. We 

assume that the system reaches stationary mode as long as half modeling time has passed. For the 

stationary regime we record Markov chain states and locations of the system with time intervals equal 

to c, assuming that the system is observed in discrete moments in time. We plot phase plot, histograms 

of x1 and x2, Markov chain transition matrices and two-dimensional distribution of (x1, x2). 

Test 1. Parameters of the model are chosen to switch between two following sets of values (all the 

parameters except a2 do not change) 
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Table 3 

Two sets of values of parameters for Test 1 

Set 1 Set 2 

a1= 0.1, a2= 0.4, 

b11= 0.2, b21= 0.4, 
b22= 0.08, b12= -0.2 

a1= 0.1, a2= 0.8, 

b11= 0.2, b21= 0.4, 
b22= 0.08, b12= -0.2 

Thus, location of the first equilibrium focus (Formula 2, Set1) 
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for the second equilibrium focus (Set 2). 

Other parameters where chosen as follows: c = 40; dt = 0.1; N = 1000; set.seed(20). 

Phase plot for Test 1 is given in Fig. 4. 

 

Fig. 4. Phase plot for Test 1 (c=40, N=1000) 

Empirical distributions of the system locations are given by the following histograms are given in 

Fig. 5. Two-dimensional distribution is given in Fig. 6. 

 

Fig. 5. Empirical distribution of x1(left) and x2(right)  

Estimated matrix with transition probabilities is given by  
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P̂ . (10) 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 20.-22.05.2015. 

 

247 

Eigen values are λ1 = 1.0, λ2 = 0.165 and λ3 = 0.0042. As λ1 is the only vector with property 

|λ| = 1 Markov chain is ergodic. Left eigenvector that corresponds to λ1 is 

 [ ]Tx 032.0478.00.490=λ  (11) 

and defines stationary distribution. 

 

Fig. 6. Two-dimensional distribution for (x1, x2) (c=40, N=2000) 

Test 2. Parameters are chosen as for Test 1, except parameters c and N. Here we choose c = 80, 

N = 500. Phase plot for Test 2 is given in Fig. 7. 

 

Fig. 7. Phase plot for Test 2 (c=80, N=500) 

Empirical distributions of the system locations are given by the following histograms (Fig. 8). 

Two-dimensional distribution is given in Fig. 9. 

 

Fig. 8. Empirical distribution of x1(left) and x2(right) at switching moments  

Estimated matrix with transition probabilities is given by  
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0.020.550.44

0.020.390.59

P̂ . (10) 
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Eigen values are λ1 = 1.0, λ2 = 0.154 and λ3 =-0.016. As λ1 is the only vector with property |λ| = 1 

Markov chain is ergodic. Left eigenvector that corresponds to λ1 is 

 [ ]Tx 02.047.00.51=λ  (11) 

and defines stationary distribution. 

 

Fig. 9. Two-dimensional distribution for (x1, x2) (c=40, N=2000) 

Results and discussion 

Here we describe and discuss the results of modeling. We used Lotke-Volterra predictor-prey 

equations and modeled it with stochastic switching between the system parameters. Switching 

moments where assumed to have exponential distribution. We selected two rectangle areas around 

equilibrium focuses that defined Markov chain states. We studied empirical distribution of the system 

location and transition probabilities of the Markov chain. 

As we can see from Tests 1 and 2, the obtained Markov chains were ergodic with stationary 

distributions. Markov chain matrices with transitional probabilities can be used as follows. There are 

two states of the dynamical system and it switches between these states at random. The states are 

defined as constraints on the number of species: the system is in the state 1/2 if the number of prey is 

from A to B and the number of predators is from C to D, where A, B, C and D are numbers that define 

rectangles Π1, Π2. Analysis of the Markov chain can be used to obtain transitional probabilities 

between given states and stationary distribution. For both tests described here stationary distributions 

show that the system spends approximately the same amount of time in each of the states. That is, 

approximately half of the time the system spends in state 1 and half in state 2, with minor part of the 

time the system being observed in intermediate state 3. 

Empirical distributions of x1 and x2 cannot be described with commonly used theoretical 

distributions but possess some important graphical features. Qualitatively there are hikes in empirical 

density around equilibrium states, assuming that there are two small regions where the system stays 

most of the time. Assumption is confirmed by investigation of empirical two-dimensional distribution 

of (x1, x2). 

Conclusions 

1. The modeling procedure shows that implementation of stochastic switching into the Lotke-

Voltera predator-prey equations leads to the ergodic Markov chain. 

2. Empirical distributions of the system location show that there are two regions around equilibrium 

states where the system is located most of the time. 

3. Stationary distribution of the obtained Markov chain shows that for the described tests 

approximately half of the time the system spends in one of the equilibrium states. Thus, the 

system is likely to be observed in any of the equilibrium states. 
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