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Abstract. Packages of thin-layered rubber-metal elements (TRME) are successfully used as bearings, joints, 

compensating devices, vibration and shock absorbers etc. TRME significantly outperform the traditional 

elements of the same purpose because of their reliability, low cost, simplicity of structural layout and assembly. 

TRME packages usually work under heavy compressive loads. TRME have high compression stiffness, which 

are several orders of magnitude greater than their shear stiffness. With the compressive forces increasing shear 

stiffness of such packets is reduced which leads to a loss of buckling stability. For TRME package under 

compression, unlike the classical theory of rod buckling stability, the shear instability takes place. In this paper 

bucling of flat-type TRME packages of rectangular shape under compression is discussed. The next formulas are 

derived for package design: the dependence of the critical external loads on loading conditions, on packages end-

fixity conditions, on layers geometrical parameters and mechanical properties of layers materials. The 

dependence of mechanical modules of elastomeric on the compressive load level is taken into account. It is 

assumed that the non-elastomeric layers are either perfectly rigid, or may undergo only a plane tensile strain. 

Small deformation is considered. The solutions obtained are compared with experimental data of other authors. 

Keywords: elastomeric, multilayer devices, stiffness, buckling, variational method. 

Introduction 

Elastomers (natural and synthetic rubber) are a unique family of materials which offer many 

engineering advantages because of their small volume compressibility and the ability to maintain large 

elastic deformation [1-3]. Reinforced elastomeric structures (or laminated elastomer) consist of 

alternating thin layers of rubber and adhesive-bonded reinforcing layers of a much more rigid material 

(usually metal). This allows to obtain the structures, which axial compression stiffness is in several 

orders greater than shear stiffness. Packages of thin-layered rubber-metal elements (hereinafter 

referred to asTRME) are successfully used as bearings, joints, compensating devices, shock-absorbers 

etc. [1-4] In practice TRME packages of different geometrical form are used: flat of various shape, 

cylindrical, conical etc; the number of layers may be different, at least three (Fig. 1).  

  

a) b) c) d) e) 

Fig. 1. Multilayer elastomeric structures examples: a – flat rectangular; b – flat circular;  

c – cylindrical; d – conical; e – spherical 

Elastomeric layer is considered as thin if its width/thickness ratio is much more than ten. 

Multilayered packets of thin-layer rubber-metal elements in which the ratio α = a/he > 10 and  

β = b/he > 10 (where a and b – the dimensions of the elastomeric layer in the plane, he – thickness of 

the elastomer layer) have extensive use almost in all spheres of engineering and construction (joints 

and bearings for various applications, support of engineering structures, vibration and shock absorbers 

ets.). In such packages working under significant compressive loads the buckling of the middle layers 

of packet is observed, i.e., the package loses buckling stability, which leads to decreasing of 

performance capabilities of packages and their failure. Buckling has shear instability form (the layers 

are shifted sidewise), rather than bending (as in the classical theory of rods stability). This occurs 

because of TRME stiffness under axial compression and the bending stiffness is in several orders 

greater than the shear stiffness. 
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Gent A. N. considers the stability of structures with thick rubber layers (with the shape factor ≈1) 

based on the classical theory of rods. This approach and the main position of Gent’s work was later 

used by many authors [3; 5; 6], but further investigations show that application of these solutions to 

thin rubber-metal elements leads to significant errors [3; 7]. Many successive works deal with TRME 

package buckling stability [8-11], the method of bending stiffness calculation on the assumption that 

the middle surface of elastomeric layer remains flat under deformation was elaborated [10]. The works 

[12; 13] where the discrete analysis of TRME package stability in matrix form was developed, are the 

most comprehensive. Nevertheless, practical use of the obtained results is limited due to the lack of 

technics for definition of elastomeric layer stiffness coefficients included in the matrix form of 

constitutive equations. An additional point is conection of TRME packages buckling stability with 

assembling errors: parallel misalingnment of nonelastomeric layers and wedging of elastomeric, 

inaccuracy of layers manufactiring and so on; this question should be discussed separately. 

When designing TRME packages to improve their operational characteristics and increase the 

permissible rate of compressive loads, it is necessary to have an analytical expression (preferably in a 

simple manner) to calculate the critical external load taking into account the TRME geometric 

parameters, scheme of external load imposing and method of TRME packet fastening, mechanical 

properties of materials. 

Materials and methods 

In the mentioned above studies it is assumed that: nonelastomeric layers are nondeformable, 

external forces are conservative, elastomeric and nonelastomeric layers are rigidly connected to each 

other, the deformation of each individual TRME is linear. Besides that, the assumptions are introduced 

that the elastomeric material layer is volumetrical incompressible and its mechanical properties are not 

dependent on the rate of external loading. But there is not argumentation of the above listed 

assumptions applicability domain and estimation of their influence on the numerical value of the 

critical forces. In the given paper the methodology of calculating the critical force for TRME package 

buckling taking into account the weak compressibility of elastomeric layers and shear modulus 

dependence on the load level which were not considered in the works [3; 9-11] is discussed. As an 

example the stability problem of the rectangular – type flat TRME package under axial compression 

between two flat parallel plates by the force P is considered. In Fig. 2 the forms of loss of stability of 

the TRME device under axial compression are shown; because the compression and tension stiffness 

are much greater than the share stiffness, the considering buckled shape includes share deformation 

(Fig. 2c).  

 

a) b) c) d) e) 

Fig. 2. Loss of stability of TRME device under axial compression: a – Euler buckling; b – pure 

shear buckling; c – Euler buckling with share contribution; d – scheme of bending for TRME section 

The TRME package (of thickness H = hcN) consists of N individual identical sections. Each 

section (thickness hc = he + hm) consists of a nondeformable metal plate (thickness – hm) and is 

vulcanised to an elastomeric layer (thickness – he and sectional area – F), which deformation is 

considered as small. When calculating the shear stiffness of the elastomeric element Ky of the shear 
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force Py the scheme of simple share is applied; for bending stiffness T calculating – the scheme when 

the metal plates are rotated with respect to each other relative to the axis of symmetry. 

For the given loading scheme (Fig. 1) lateral deviation ymax for the section in the central part of the 

package (z = 0.5 H) is found from the derived in [3] equation: 
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where q – function of the axial compressive force. 

From (1) at π50250 .qH. →  lateral displacement increases infinitely and the buckling condition 

may be written as: 
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Critical value Pz,cr axial compressive force is from the stability condition (2): 
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Shear stiffness of the elastomeric layer Ky determined from pure shear scheme is: 
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Bending stiffness without accounting of the elastomeric layer low compressibility:  
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where G – shear modulus of the elastomer; 

 Ix – axial moment of inertia of the cross section of the element of the TRME package; 

 Ф – shape factor; 

 γ – empirical coefficient 

 Fl – loaded surface area of the block; 

 Ff – free surface area. 

The dependence (3) ÷ (5) gives acceptable results for elastomeric layers with a shape factor 1 ÷ 2 

(or b/he and a/he < 5), small deformations and for specific axial load Pz/F to 5 ÷ 10 MPa [4]. To 

determine the critical axial compression force for small deformations domain, thin layers (b/he and 

a/he> 10) and high specific axial loads (Pz/F > 10 MPa) formula (3) may be used if instead stiffness (4) 

and (5) to substitute shear Ky and bending T stiffness calculating with accounting of the elastomeric 

layer weak compressibility and the loading level effect on shear modulus of the elastomeric material. 

For thin layers one elastomeric layer bending stiffness T (load scheme is given in Fig. 2) is 

calculated, using the principle of minimum of total potential energy of deformation [14] subject to the 

weak compressibility of elastomer, assuming that metal layers are nondeformable: 
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where s – spesific hydrostatic pressure; 

 ui – axial displacement functions; 

 V– volume of elastomeric layer; 

 i, j – coordinates x, y, z of cartesian coordinate system, over repeated subscripts

 summation is fulfilled, a comma in the subscript denotes the partial derivative. 
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For a single TRME layer the origin of coordinate is choosen in the center of gravity of the 

element (Fig. 2). Using the functional (6) requires the mandatory implementation of the geometrical 

boundary conditions for the displacements: 

  ;0)5.0,,( =± ex hyxu  ;0)5.0,,( =± ey hyxu .)5.0,,( ψyhyxu ez ±=±  (7)  

For the function s (x, y, z) there are no mandatory boundary conditions as forces boundary 

conditions for the functional (6) are the natural boundary conditions. Considering the conditions (7) 

the displacements and hidrostatic pressure functions are selected: 
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Since from the equations (7) and (8) 
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the dependence “M-ψ” is found by the constant A4 without defining other constants of the system 

from the condition of functional (6) minimum: 
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Since a significant effect of weak compressibility (depending on the Poisson ratio value) may be 

expected only for sufficiently thin elastomeric layers, the system (9) may be simplified, leaving only 

the factors and terms proportional to α
2
 and β

2
. 

In this case for the middle section of thin elastomeric layers package, dependence “bending 

moment – rotation angle” (M-ψ) and the bending stiffness T1 may be written, considering the weak 

compressibility of the elastomer:  
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In the considered case, if the change of thickness of the elastomeric layer is not taken into 

account, the shear stiffness Ky does not change and may be calculated by the formula (4) for the 

scheme of pure shear. Buckling load Pz,cr is calculated by the formula (3), substituting the bending 

stiffness T1 for T. 

The results of the experiments on thin TRME compression [3; 14] show that at relatively small 

strains (up to 10 ÷ 15 %), specific loading (Pz/F) may reach 200 MPa. The dependence of the “force – 

displacement” has a highly nonlinear character, indicating that the mechanical modules of elastomer 

depend on the level of the specific compressive strength even in small deformation area. In 

experimental studies it is shown that shear and bulk modulus of elastomeric layer G and K depend on 

the intensity of the specific loading if s = Pz/F is more than 5 MPa [14; 15]. 

In order to take into account load intensity influence on “force – displacement” dependence the 

author of work [16] proposes to take the linear solution as an approximate solution, in which instead of 

modules G and K it is necessary to substitute the values G(s) and K(s) which correspond to the average 

hydrostatic pressure value s (x, y, z). For thin flat elastomeric layers it can be assumed with sufficient 

accuracy that s = Pz/F (where F – the area of plane layer). This approximation will be the better, the 

less distortion -strain energy of a thin elastomeric layer specific contribution into “force – 

displacement” dependence. This approach allows calculating of G(s) and K(s) from the volumetric 

“tension – compression” experiments with accuracy up to the assumption of small deformations. Due 
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to lack of experimental data it is proposed in [14; 15] at first approximation to assume that the 

dependence of G(s) and K(s) has the same type: 

 sKsKGsG ⋅+=≈ ϕ1)()( , (11)  

where the factor φ is defined from the experiment on pure volumetric compression. Therefore, 

when designing the stability of TRME package with very thin flat rectangular layers under axial 

compression between two flat parallel plates (Fig. 2) for calculating the critical force it is 

recommended to apply the equation: 
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This equation takes into consideration formulas (3), (4), (10), (11) and allows to estimate the 

critical force for large values of the specific external compressive load. 

Results and discussion 

The results of critical forces calculation for flat rectangular TRME package (with typical in 

industrial application dimensions) are presented bellow. Plots of buckling force dependence on the 

number of sections in the packet are given for four types of TRME, which were fabricated and tested 

in the Moscow Institute “Teploprojekt”. For thin layered packages the experimental critical force does 

not coincide with calculating in accordance with conventional equation (3). 

In Fig. 3a buckling force plots for TRME packet PRM-210 with steel rigid layers are shown; 

PRM-210 data: a = 35 mm, b = 35 mm, he = 0.44 mm, hm = 0.1 mm, hc=0.54mm, shape factor  

Φ = 19.9, G = 0.45MPa, µ = 0.4981, φ = 0.001. In Fig. 3b buckling force plots for PRM-35 are given; 

material properties and dimensions are the same as for PRM-210, excluding he = 0.1 mm, Φ = 87.5.  

In Fig. 3c buckling force plots for sample No.2 with brass bonded layers are given; dimensions:  

a = 49.5 mm, b = 52.5 mm, he = 0.33 mm, hm = 0.05 mm, hc = 0.38 mm, Φ = 38.6, G = 0.45MPa,  

µ = 0.4981, φ = 0.001. In Fig. 3d buckling force plots for sample No.6 are shown; No.6 data:  

a = 47 mm, b = 49 mm, he = 0.58 mm, hm = 0.05 mm, hc= 0.63mm, Φ = 20.6, G = 1.6MPa, µ = 0.4903, 

φ = 0.001.  

 
a) PRM-210: α = β= 79.5, Φ = 19.9 b) PRM-35: α = β =350, Φ=87.5 

 
c) No.2: α =150, β = 159, Φ = 38.6 d) No.6: α =81, β= 84, Φ = 20.6 

Fig. 3. Plots of critical force dependence on number of TRME sections device under axial 

compression:  in accordance with equation (3), in accordance with (3) taking into 

account (10), in accordance with equation (12) 
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The specific load in all cases is more than 20 MPa. It is seen from the plots how the critical force 

value depends on the thickness of elastomeric layers and on the number of the sections. 

Conclusions 

This work presented the methodology of the buckling force calculation for thin-layered rubber-

metal packages widely used as vibroisolators, shock absorbers, and compensation devices. Such 

devices usually carry very large load and should be checked on buckling. Three approaches are 

discussed: 

1. conventional; 

2. taking into account the thickness of elastomeric layers; 

3. taking into account the thickness of elastomeric layers and changing of the elastomeric 

mechanical properties (shear and bulk modules) depending on pressure. 

The results of the numerical examples show that at the number of layers in the package increasing 

the critical force value becames closer. Each type of TRME demands individual approach. 
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