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Abstract. When several robots explore the same environment, it is at some point necessary to merge their local 

maps into a global map to exploit the full potential of the robot team. Efficient multi-robot task coordination is 

virtually impossible without a common interpretation of the environment. If there is no information available 

about the relative positioning of the robots or if this information is uncertain, the evaluation of the map merging 

result is a vital step in the creation of a global map. The proposed map similarity evaluation offers a way to 

successfully evaluate the similarity of occupancy grid maps that are not locally identical. 
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1. Introduction 

The evaluation of the map merging result is an essential step in the creation of a global robot map. 

In this paper a map similarity evaluation is proposed that evaluates the similarity of occupancy grid 

maps that are not locally identical. To achieve it the local maps are converted into distance grids, and a 

threshold of maximum acceptable Manhattan distance deviation is set. In addition, the evaluation 

distinguishes “occupied” and “free” cell comparison and offers a way to represent the importance of a 

particular cell type (representing “free” or “occupied” area) similarity by setting weights.  

The maps considered in this paper are occupancy grids. Occupancy grids are robot maps that 

represent the environment as a discrete grid [1]. In this paper it is assumed that the occupancy values 

of the occupancy grid cells can acquire any value from 0 to 1 (0 – “free” area, 1 – “occupied” area). If 

the occupancy of the corresponding area is completely unknown, the value of the cell is 0.5. In 

graphical illustrations (see Figure 1) the occupancy grids are commonly represented as having black 

“occupied” cells, white “free” cells and various shades of gray for any value between the two 

extremes.  

 

Fig. 1. Example of occupancy grid map 

Inaccurate local maps make successful creation of the global map significantly more difficult. The 

inaccuracies of the local maps can be divided in two groups. 

• Local inaccuracies represent sensor errors and small position estimate deviations from the 

actual robot location. As a result the constructed local map does not represent the objects 

completely accurately.  

• Global inaccuracies represent the map errors that are caused by accumulating the robot 

position error. As a result of the global mapping errors the map may be very different from the 

actual configuration of the environment. 

If the relative positioning of the robot maps is unknown, even the merging of completely accurate 

local maps is not a trivial task [2-6]. Local inaccuracies make the merging task harder, and globally 

inaccurate maps are virtually impossible to merge. Therefore, in the map merging task it is usually 

assumed that the local maps are accurate or only contain local inaccuracies. In real life applications 

maps without local inaccuracies are non-existent due to the probabilistic nature of the mapping, and 

therefore all maps contain local errors. It can be concluded that for successful use in multi-robot 

systems the map similarity evaluation must be resistant to the local differences of the maps. 

This paper is organized as follows. Chapter 2 illustrates the related work in the evaluation of the 

map merging results. Chapter 3 describes the proposed map similarity evaluation. In chapter 4 the 

results of the map similarity evaluation application are shown.  
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2. Related work 

One approach in multi-robot mapping implementations is to create the map collectively by 

assuming that the robots are operating in a common reference frame [7-10]. In this case the map 

similarity evaluation is not necessary, because the robot sensor readings are incorporated in the map 

directly. However, if the maps are merged at a later point in environment exploration by using robot 

relative position estimate or by making a guess about the common part of the maps without pose 

information, it is important to evaluate the map merging hypothesis.  

Some works do not consider map merging evaluation at all [11; 12]. However, there may be 

situations, when the best found merging hypothesis is not correct. Even if the best merging is found in 

the terms of the employed approach, it does not exclude the possibility that the two maps do not 

overlap.  

There are several works about the estimation of the map merging quality. Konolige and others [2] 

offer to verify hypothesis of map merging by organising robot meeting. If the robots do not meet at the 

appointed place, the map merging is deemed incorrect. Other approaches do verify the result of the 

map merging without the robot meeting but are not applicable to occupancy grid maps [13-16]. 

The work of the occupancy grid merging evaluation most often cited in the literature examined by 

the authors of this paper is proposed by Birk and Carpin in [3], which is also adapted by several later 

map merging researches [4-6]. They use an acceptance indicator that computes the ratio between the 

cells with similar values and the cells with both similar and dissimilar values. Unfortunately, this 

approach is not resistant to the local dissimilarities of the maps.  

3. Map similarity evaluation for non-identical maps 

The proposed map similarity evaluation defines the influence of both cell types and takes into 

account the possibility of local inaccuracies in the maps. It is computed as seen in equation 1: 

 ( )
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21 ,  (1) 

where wocc – importance (weight) of the “occupied” cell similarity;  

 socc – evaluation results of “occupied” cell similarity; 

 sfree – evaluation results of “free” cell similarity. 

In computation of both cell similarities one parameter is required – a threshold that describes, how 

far the mapping error may extend in the particular maps. This threshold defines the Manhattan 

distance, at which two cells are considered “in range” – close enough that they may represent the same 

obstacle. The distance threshold should be experimentally set and take into account the resolution of 

the maps and the sensor error.  

3.1. Occupied cell similarity evaluation 

The “occupied” cell similarity is computed by creating and using the distance grids of the maps. 

The distance grid of a map represents each cell Manhattan distance to the closest cell with previously 

defined target value (in this case it is a cell with the value “occupied” or ‘free’).  

An effective way to compute distance grids is an algorithm developed by Andreas Birk [17]. This 

algorithm originally consists of three steps, but one additional step has been added to create the 

distance grid version used in the proposed map similarity evaluation. Additionally, the grid 

initialization is supplemented with “unknown” cell initialization. The original algorithm is as follows 

[17]: 

1. Initialization – all “occupied” cells are initialized with “0”. All the other cells are initialized 

with a “∞”. In real life applications a number that equals or exceeds the largest possible 

Manhattan distance between two cells is used instead of infinity. 

2. First step of relaxation – the distance grid cell values are updated, beginning with upper left 

corner of the map. The new cell value is a minimum of a) current cell value, b) upper cell 

value + 1, c) left cell value + 1.  
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3. Second step of relaxation – it is similar to the first step of relaxation with the differences that 

the cells are updated beginning from the lower right corner of the map and the new cell value 

is a minimum of a) current cell value, b) lower cell value + 1, c) right cell value + 1. 

To accommodate the specifics of the robot mapping the following modifications have been made 

to the distance grid map: 

• “Unknown” cells are considered as “occupied” during the distance computations with the 

difference that their base value is “1”. This is necessary because the “unknown” cells may be 

“occupied”, and the differences between the border (bordering “unknown” cells) cells of two 

maps may actually be local inaccuracies. The base value is set to “1”, not “0”, as a penalty for 

the uncertainty of the actual cell value.  

• At the end of the distance grid computation the “unknown” cell values in the distance grid are 

set to “-1”. This is to avoid estimating two cells as similar or dissimilar, when one cell value is 

not known.   

The resulting distance grid with these modifications is represented in Figure 2.  

 

 

 

2 2 3 3 4 4 3 2 - 2 3 3 3 2 1 - 

- 1 2 2 3 4 4 3 2 3 3 2 2 1 0 - 

- 0 1 1 2 3 4 4 3 3 2 1 1 0 0 - 

- 0 0 0 1 2 3 4 3 2 1 0 0 0 0 - 

- - - - - 2 3 4 3 2 1 0 0 0 0 - 

- - 2 2 2 3 4 5 4 3 2 1 1 1 0 - 

- 2 2 3 3 3 3 4 5 4 3 2 2 2 - - 

- 1 1 2 3 2 2 3 4 5 4 3 2 - - - 

- 0 0 1 2 1 1 2 3 4 4 3 2 - - - 

- 0 0 0 1 0 0 1 2 3 3 2 1 0 - - 

- - 0 - - 0 0 0 1 2 2 1 0 0 - - 

- - - - - - - 0 1 2 2 - 0 - - - 

Fig. 2. Example of modified distance grid 

Any other method can be used for computation as long as it returns the desired form of the 

distance grids. Once the distance grids are computed, the algorithm to compute the “occupied” cell 

similarity is simple and uses two counters – “sim” for similar cells and “dis” for dissimilar cells: 

• If a cell value is “occupied” in both maps, then the cells are considered similar and the “sim” 

counter is increased by one.  

• If a cell value is “occupied” in one map and “free” in the other map, then the distance grid is 

used to determine the Manhattan distance to the closest “occupied” or “unknown” cell. If the 

distance falls within the distance threshold, then the cells are considered similar and the “sim” 

counter is increased by one. Otherwise, “dis” counter is increased by one.  

• If a cell value is not “occupied” in both maps or if a cell value is “unknown” in either map, 

then no counters are increased. 

When all cells are compared, the “occupied” cell similarity is computed as seen in equation 2:  

 
dissim

sim
socc

+
=  (2) 

where socc – “occupied” cell similarity; 

 sim – count of similar cells in the common part of maps; 

 dis – count of dissimilar cells in the common part of maps. 

3.2. Free cell similarity evaluation 

 The “free” cell similarity is evaluated a little differently than the “occupied” cell similarity. Both 

the original robot local maps and the computed distance grids are used for comparison. The algorithm 

for determining whether two cells should be deemed similar is as follows: 

• If the corresponding cells in both maps are “free”, then the cells are similar.  
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• If the cell is “free” in one map and “occupied” in another, then the cells are dissimilar if the 

“free” cell distance to the closest “occupied” cell is greater than the set distance threshold. 

Otherwise, the cells are considered similar. 

• If the cell is “unknown” in at least one of the maps, or the cell value is “occupied” in both 

maps, then the cells are neither similar nor dissimilar.  

The “free” cell similarity is then computed in the same way as for “occupied” cells (Equation 2). 

3.3. Summary 

The proposed map similarity evaluation can be used for the evaluation of the map merging 

hypothesis of locally inaccurate maps, when some meta knowledge about the map characteristics is 

available. The knowledge about maps is necessary to set an appropriate distance threshold that is 

required for map comparison. If the threshold is too small, then the evaluation may show poor results 

even if the transformation hypothesis is correct. On the other hand, if the threshold is too large, then 

the evaluation will show high similarity even for highly different maps. In general, the 

recommendation is to keep the distance threshold based on the sensor error and the cell size.  

4. The results of the proposed map similarity evaluation 

To show the indicative performance of the proposed map similarity evaluation it was compared 

with the evaluation often found in literature – direct cell comparison [3]. There are several cases that 

might affect the result of the map similarity evaluation and they are assessed further in this chapter. 

The distance threshold of the proposed approach was set to “3” in all experiments, and the importance 

weight of “occupied” cells is 0.7. Within the evaluation procedure the maps are considered similar 

(consistently merged) if their similarity value is 0.97 or more. 

4.1. Accurate and correctly merged maps 

In reality the maps acquired by real robot systems are never completely accurate. However, the 

maps used in this experiment [18] (see Figure 3.a and 3.b) are actually two parts of one map and are 

therefore identical, and it can be assumed that they are accurate.  

Fig. 3. Accurate and correctly merged maps [18] 

Two maps were merged (see Figure 3.c), and both, the direct occupancy grid cell comparison and 

the proposed map similarity evaluation for non-identical maps show that the common part of the maps 

is identical – their similarity evaluation value is 1.  

4.2. Locally inaccurate and correctly merged maps 

In most cases both evaluations show good results and evaluate map merging as consistent, if the 

maps are correctly merged and locally inaccurate. There are cases, however, when direct cell 

comparison performs worse, if the common explored area is not very large. Each dissimilar cell has 

larger impact on the direct cell comparison, and for this reason the similarity evaluation drops below 

the similarity value of 0.97 and the merging is not accepted as correct. One such case can be seen in 

Figure 4 – evaluation of the proposed approach is still 1 while the direct cell comparison evaluation is 

0.959.  

The maps in Figure 4 are acquired from the multi-robot system developed by the authors of this 

paper. The maps 4.a and 4.b are the maps used for merging, and 4.c is the resulting merged map. The 

maps 4.a and 4.b are also the source maps for all further examples (Figures 5 and 6). 

a) 

 

b) 

  

c) 

 
Direct cell comparison – 1 The proposed approach – 1 
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a) b) c) 

      
Direct cell comparison – 0.959 The proposed approach – 1.000 

Fig. 4. Locally inaccurate and correctly merged maps: maps a) and b) are the source maps used for 

merging and map c) is the resulting merging 

4.3. Locally inaccurate and slightly incorrectly merged maps 

Figure 5 shows two map mergings with slightly incorrect transformations. The left side global 

map (Figure 5.a) has small translational errors (1 and 2 cell deviations), and the right side global map 

(Figure 5.b) has a rotational error of 3 degrees. The proposed evaluation evaluates both results as 

correct (0.989 and 1) while the direct cell comparison rejects the merging hypotheses (0.904. and 

0.926). However, it can be seen that both results are actually very similar to the correct merging (see 

Figure 4.c) and could be successfully used by the robots.  

a) b) 

  
Direct cell comparison – 0.904 

The proposed approach – 0.989 

Direct cell comparison – 0.926 

The proposed approach – 1.000 

Fig. 5. Locally inaccurate and slightly incorrectly merged maps 

4.4. Locally inaccurate and visibly incorrectly merged maps 

The results, when the maps are locally inaccurate and incorrectly merged, differ in each case. 

Figure 6 shows two incorrect mergings, and it can be seen that the performance of similarity 

evaluations varies – the proposed approach correctly shows lower similarity for the map in Figure 5.a - 

0.808 (direct cell similarity 0.876) but higher similarity for the map in Figure 5.b – 0.929 (direct cell 

similarity 0.854). However, in both cases evaluations show that the maps are merged incorrectly (the 

failed merging similarity is below 0.97). It is possible that in some cases evaluations may show 

positive results when the merging is actually wrong but this is inevitable if there are several acceptable 

ways of fusing maps.  

a) b) 

  
Direct cell comparison – 0.876 

The proposed approach – 0.808 

Direct cell comparison – 0.854 

The proposed approach – 0.929 

Fig. 6. Locally inaccurate and visibly incorrectly merged maps 
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5. Conclusions 

This paper proposes a robot map similarity evaluation that is capable of evaluating the occupancy 

grid map merging hypothesis, when the maps are locally inaccurate. It is achieved by comparing the 

grid cells taking into account the possible errors of the robot sensor measurements.  

The proposed evaluation was compared with the evaluation widely used in occupancy grid map 

merging. The comparison shows that the proposed evaluation achieves at least as good results, when 

the maps are accurate and correctly merged, and better results, when the maps are locally inaccurate or 

the merging hypothesis is close to the correct merging. The incorrect map mergings show different 

results depending on the particular case. If the distance threshold is set according to the 

recommendations, then the proposed evaluation correctly shows, which map merging is acceptable 

and which is not.  
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