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Abstract. Very large achievements in mechanics of the field of aerodynamics and hydrodynamics exist. In the 

same time there are many technical tasks to be solved. One of the tasks group is find out new kinds of energy 

transformation from constant fluid flow to accumulators. Its needs optimization form and parameters of technical 

objects. A criteria like energy saving or its useful utilization from interaction with air or water flow may be used. 

In the first part of report a motion of a vibrator with constant air or water flow velocity excitation is optimized. 

The main task is to find out optimal control law for variation of area of vibrating object within limits. It is shown 

that optimal control action is on bounds of area limits. Synthesis of control law in phase coordinates shows that 

very effective real control law is change area of object when it stops right or left side. In the second part of report 

obtained optimal control law is realized in real vibration system. 

Keywords: motion control, air or water flow excitation, energy utilization, optimal control, adaptive control, 

synthesis adaptive systems. 

Introduction 

Motion of a vibrator with two degree of freedom and constant air flow 0V  excitation is 

investigated (Fig. 1). System consists of masses m1, m2 with springs c1, c12 and dampers b1, b12. The 

main idea is to find out optimal control law in time for variation of additional area S(t) of vibrating 

mass m2 within limits (1): 

 ,)( 21 StSS ≤≤  (1) 

where 1S  – lower level of additional area of mass m2;  

 2S – upper level of additional area of mass m2; 

  t – time. 

 

Fig. 1. Scheme of model with area S(t) control: m1, m2 – masses of moving bodies; c1, c12 – stiffness 

of springs;  b1, b12  – damping coefficients; .V0 – air flow velocity; S1, S2 – lower and upper level of 

area;  of mass m2; S(t) – area control in time in phase plane (zn – displacement, vzn – velocity) 

The criterion of optimization K is time T required to move object from initial position to end 

position. For system excitation any time must be solved the high-speed problem (2) [1 - 3]: 

 ∫ ⋅=
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To assume ,;0 10 Ttt ==  we have TK = . In this investigation equation of motion for large 

flow velocity xV &≥0  may be described as (3): 
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where −yyy &&&,, displacement, velocity and acceleration of mass m1;  

 −zzz &&&,,  displacement, velocity and acceleration of mass m2. 

To use new variables (phase coordinates) zxxzxyxxyx &&&& ====== 343121 ,,,  the 

system (6) may be written in first order differential equation form (4): 
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In this system with two degree of freedom Hamiltonian is [1 -6]: 
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here XH ⋅= ψ where (4) 
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Scalar multiplication of two last vector functions ψ  and X  in any time (function H) must be 

maximal. To have such maximum, control action u(t) must be within limits 
21 )(;)( utuutu == , 

depending only from the sign of function 4ψ  (5): 
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The main conclusion of optimal control law (8, 9) for this system with two degree of freedom is 

that value of area any time must be on the bounds (1): S(t) = S1 or S(t) = S2. 

Synthesis of real control action  

For realizing optimal control actions (in general case) system needs a feedback with two adapters: 

one for displacement measurement and another – for velocity measurement.  

  

 

 

 

 

 

Fig. 2. Control by two adapters and one 

separation line x4 = x3 · C1 + C2 in phase plane:  
x3, x4 – phase coordinates of mass m2; C1, C2 – 

integration constants; S1, S2 – lower and upper 

level of area 

Fig. 3. Control by two adapters and one 

broken separation line in phase plane: x3, x4 – 

phase coordinates of mass m2; C1,3, C2 – 

integration constants; S1, S2 - lower and upper 

level of area 
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Fig. 4. Control by two adapters with fixing 

only levels of phase coordinates: x3, x4 – phase 

coordinates of mass m2; S1, S2 - lower and upper 

level of area 

Fig. 5. Control by only one velocity adapter 

which fix zero level: x3, x4 – phase coordinates of 

mass m2; S1, S2 - lower and upper level of area 

Modeling equation for control action with fixing levels of both phase coordinates (Fig. 2.) is (8): 

 [ ] [ ]))(5,05,0(2)0()),((1)0( 22
zsignSzVkzzFSzVkU &&&& ⋅−⋅⋅+⋅−⋅⋅+⋅−=  (8) 

where (see Equation 3)   
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 k, C3 – constants.  

Modeling equation for control action with one zero level of phase coordinate - velocity (Fig. 3.) is 

(9): 

 [ ] [ ].))(5,05,0(2)0())(5,05,0(1)0( 22
zsignSzVkzsignSzVkU &&&& ⋅−⋅⋅+⋅−⋅+⋅⋅+⋅−=  (9) 

Motion modeling with constant excitation parameters 

Results of modeling are shown in Fig. 6 - 13. Examples of motion for control (8) by two adapters 

with fixing only levels of phase coordinates are shown in Fig. 6 - 9. Motion is very stable because 

trajectories in phase plane for mass m2 practically do not crosse (Fig. 7.). Examples of motion in 

phase plane for second more efficiency control (9) (by only one velocity adapter which fix zero level) 

is shown in Fig. 10. - 13.  
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Fig. 6. Motion of mass m1 in phase plane with 

control (8) in the system SI 

Fig. 7. Motion of mass m2 in phase plane with 

control (8) in the system SI 
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Fig. 8. Control action (8) in time tn domain in the SI 

system 

Fig. 9. Control action (8) as function of 

displacement zn in the SI system 
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Fig. 10. Motion of mass m1 in phase plane (in 

SI system) with control (9). Motion is very 

stable 

Fig. 11. Motion of mass m2 in phase plane (in 

SI system) with control (9). Motion is very 

stable 
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Fig. 12. Control action (9) in time tn domain (in SI 

system) 

Fig. 13. Control action (9) as function of 

displacement z (in SI system) 

Motion modeling with harmonica and random parameters excitation 

To check up stability of motion mass m2 was investigated two kinds of wind velocity exchange: 

by harmonica and random parameters. Investigation shows that motion is very stable (Fig. 14 -17). 
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Fig. 14. Control action (9) and wind velocity harmonica exchange in time tn domain (in SI 

system) 
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Fig. 15. Motion of mass m 1 in phase plane (yn – 

displacement, vyn – velocity) with control 

Fig. 14 (in SI system) 

Fig. 16. Motion of mass m 2 in phase plane (zn – 

displacement, vzn – velocity) with control 

Fig. 14 (in SI system) 
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Fig. 17. Control action (9) and wind velocity 

mixed exchange in time tn domain 

Fig. 18. Motion of mass m2 in phase plane (zn – 

displacement, vzn – velocity) with control (9) 

Analyses of controls (8) and (9) show that these adaptive systems have very stable motion 

(Fig. 10 - 18). It means that trajectories of main mass in phase plane practically dos not crossed and 

periodical cycle is achieved after small time.  

At the end of investigations some experimental works inside wind tunnel are analyzed. 

Investigated system includes console spring and plane lamina at the end (Fig. 19). Experiments 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 29.-30.05.2008. 

198 

confirm that airflow excitation is very efficient and vibration was excited in large region of air flow 

velocity. 

 

    

Fig. 19. Wind tunnel and vibrating system inside (right) with console spring and plane lamina  

Conclusions  

Air or water flow may be used for excitation objects motion in vibration technique. Control of 

object area allows finding very efficient mechatronic systems for energy conservation. Use of new 

vibration systems with air or water flow is in starting position and needs more fundamental 

investigations. 
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