THE SHARE-MOLDBOARD PARAMETERS OF SOME PLOUGH BODIES

Arvids Vilde

Latvia University of Agriculture, Research Institute of Agricultural Machinery,

vilde@delfi.lv

Abstract. The main parameters of the plough body that determine the ploughing efficiency are the initial and the final soil slice lifting angles on the share-mouldboard surface, the angle of its horizontal generatrix, the radius of this surface and the working width of the body. Studies have been carried out to determine the share-mouldboard parameters of some contemporary plough bodies: the cultural (digger), semi-helicoidal and helicoidal types. For this purpose profilograms of its share-mouldboard surfaces are made and the values of the investigated parameters measured. The energetic, agronomic and economic characteristics of ploughs were estimated by their testing. As the result of investigations, it was discovered that the optimal values of the main parameters of the bottoms for contemporary ploughs are: the inclination angle of the share towards the furrow bottom $- 28...32^{\circ}$; the inclination angle of the horizontal generatrix towards the furrow wall on the initial part of the share-mouldboard surface $- 34...38^{\circ}$, on the top - not less than 48° ; the working width of the bottom - 45...50 cm. The conducted investigations show that only those ploughs generally meet the requirements mentioned above which have bodies with gently sloping semi-helicoidal or helicoidal share-mouldboard surfaces, such as the Kverneland plough body No. 8. The use of bodies having optimal parameters allows attaining good ploughing quality, reducing the draft resistance by 12...20 % and raising correspondingly the efficiency, saving fuel and financial resources for ploughing.

Key words: plough body parameters, initial lifting angle, final lifting angle, angle of horizontal generatrix, optimal parameters.

Introduction

Ploughing is one of the most power-consuming and expensive processes in agricultural production. It is known that the draft resistance of ploughs, the energy requirement for ploughing, the quality of ploughing and expenses depend on the plough body design, which is determined by the share-mouldboard parameters and the parameters of its supporting surfaces, as well as such soil properties as its hardness, density, friction and adhesion.

In the Latvian agriculture the transition process from the old machines, made in the former Soviet Union (now – the Commonwealth of Independent States, CIS), to new ones coming from the West European countries is going on. The new machinery is more progressive but more complicate and expensive too. This may raise the costs of agricultural production. Therefore measures should be taken to choose and use more efficient machines, including ploughs. In the previous years the new machines, including the ploughs were tested at the Baltic Machine Testing Station (Baltic MTS) with the participation of the scientists from our institute, and were recommended or not recommended for the use in the Baltic States [1-4]. At present nobody carries out such an assessment of the ploughs in Latvia. The documents about their purchase do not present objective information allowing to choose the most suitable plough for particular circumstances.

The purpose of this investigation was to clarify the values of the main parameters of sharemouldboards surfaces of the plough bodies allowing the estimation of their efficiency and suitability for ploughing soil under Latvian conditions.

Materials and methods

An assessment of some plough bodies, mainly used on Latvian farms, as well as those offered by the plough manufacturers and dealers, was carried out (Fig. 1, 2). The design of the plough body and its share-mouldboard surface are defined by its angular and linear parameters (Fig. 3), the main of them being as follows.

The angular parameters of share-mouldboard surface:

- the initial inclination (lifting) angle ε_l (the inclination angle of the share towards the horizontal plane, respectively towards the furrow bottom);
- the final lifting angle ε_2 (the inclined upper part of the surface);

• the inclination angle of the horizontal generatrix - γ (the inclination angle of the horizontal shape lines towards the vertical-longitudinal plane, respectively – towards the furrow side) and the regularities of its variation).

The linear parameters of the share-mouldboard surface and the plough bottom:

- the working width of the bottom -b;
- the working width of the plough share b_s ;
- the radius of the mouldboard curvature -r;
- the height of the share-mouldboard surface -h;
- the length of the share-mouldboard surface $-l_x$ (the length of the projection in the direction of its movement);
- the width of the share-mouldboard surface $-b_y$ (the width of the body profile).

Fig. 1. The types of the plough bodies: a – cultural body PLŽ 31.000 of the PLN plough group;
b – a culture-semi-helicoidal body PGC–61.000 (PGC–31.000) of the PGP plough group; c – a semi-helicoidal body KVU-40000 manufactured for the PGP plough group; d – a semi-helicoidal body No 8 of the Kverneland plough group; e – a helicoidal body SA 600 HL of the Overums-Bruk plough group; f – a culture body P 135-13 of the plough PN-1-422 from Czechy

Fig. 2. A semi-helicoidal body KAUR-40 AGS having an adjustable curvature of the mouldboard: a – the frontal sight: 1 – the point (chisel); 2 – the share; 3 the mouldboard; 4 – the mouldboard extended lamina; 5 – the trash-board (skim coulter); 6 – the knife; b – the rear sight: 1, 2 – spreaders for support and regulation of the share mouldboard curvature; 3 – the foot of body; 4 – the mouldboard; 5, 6 – the struts

The semi-helicoidal body KAUR–40 AGS (Fig. 3), manufactured by SIA "AGS" in Cesis, has an adjustable mouldboard curvature, as well as angles of the horizontal shape lines (generatrix). This allows obtaining the best mouldboard form corresponding to the particular working conditions.

Fig. 3. Scheme of the plough body with its angular parameters

Results and discussion

Studies were carried out of a series of share-mouldboard surfaces of the plough bodies. The shapes of the share-mouldboard surfaces were determined according to their profile lines, the parameters - by measuring the angles of or the distances between these profile lines. In order to get the profile lines, a special stand (test bench) was used. The profile lines were obtained by cutting the share-mouldboard surface with the planes running in parallel to the coordinate planes x-z, y-z and x-y, as well with the planes, which are vertical to the plane x-y running perpendicularly to the share edge. The distance between the shape lines (the foot-pace) was 25 mm. The values of the share-mouldboards parameters: the inclination angles γ of the horizontal shape lines, the initial ε_1 and the final ε_2 lifting angles and radius *r* of the mouldboard were determined using the data about the form and location of the shape lines (Fig. 3).

Fig. 4. The coincidence of the horizontal projection of some bodies (share-mouldboards):
1 – a helicoidal body SA 600 HL of the Overums-Bruk ploughs; 2 – a semi-helicoidal body No 8 of the Kverneland ploughs; 3 – a semi-helicoidal body KVU-40000 for the PGP loughs;
4 – a culture-semi-helicoidal body PGC–61.000 (PGC–31.000) of the PGP ploughs

Table 1

		Designation of the plough (trade name)							
Symbol	Unit of	PGP -7 40		Overums	Kverneland	PN-1-			
of the	measu-	Designation		Bruk	body	422	Optimal		
parameter	rement	of the body		SA 600	No 8	P 135-13	value of the		
		PGC	KVU 40.000	HL		Czechy	parameter		
1	2	01.000	40.000	5	6	7	ø		
1	dag	<u> </u>	4	5	0 38 (42)	/	ð		
<i>7</i> 0	deg	42	37	31(38)	38 (42)	43	20.24		
<i>Y</i> 25	deg	42	30.3	2924	36 78	44	2924		
<i>7</i> 50	deg	42	30	2921	3020	43	2021		
775	deg	41	35 23	2713	40 21	45 27	2713		
<u>\vee{100}</u>	deg	41	3523	2018	4021	4527	2710		
<i>₹</i> /125	deg	42	36.5.24	2922	4123	4530	2022		
<i>Y</i> 150	deg	42	30.324	3023	4324	4533	2923		
<i>Y</i> 175	deg	42.5	3723	3024	4024	4555	3024		
7 200	deg	45.5	37.320	3120	4823	4540	3120		
Y225	deg	44.5	383927	3221	4025	454/	3221		
γ_{250}	deg	45.5	384027	3430	4026	4551	3430		
<i>Y</i> 275	deg	46,5	384227	3833	4027	4552	3833		
¥ 300	deg	48	384232	4135	4028	4552	4135		
<i>Y</i> 325	deg	49	394332	4337	3930	4553	4337		
Y 350	deg	50.5	424433	4440	3835	4655	4440		
Y 375	deg	52.5	434538	45	3837	4856	46		
Y 400	deg	54.5	4744	46	4039	4856	48		
<i>Y</i> 425	deg	56.5	4744	-	4340	4857			
<i>Y</i> 450	deg	57	46	-	41	58			
Y 475	deg	-	46	-	-	57			
% 500	deg	-	47	-	-	58			
γ_{p0}	deg	41	48	76	69				
γ_{p25}	deg	43	5441	76	69				
γ_{p50}	deg	43	5632	76	69				
γ_{p75}	deg	47	5236	68	69				
γ_{p100}	deg	6548	4335	47	-				
γ_{p125}	deg	6545	-	-	-				
γ_{p150}	deg	5146	-	-	-				
γ_{p175}	deg	42	-	-	-				
$\Delta \gamma$	deg	15	10	15	5	15	1417		
$\Delta \gamma'$	deg	1	2	5	2	0	35		
$\Delta \gamma$ '	deg	16	12	20	7	15	1620		
γ_{t250}	deg	45	-	-	-				
Yt275	deg	48	-	-	-				
<i>Yt</i> 300	deg	48	-	-	-				
Yt325	deg	4851	-	-	-				
<i>Yt</i> 350	deg	5057	-	-	-				
Yt375	deg	5058	-	-	-				
γ_{t400}	deg	4361	5490	-	-				
<i>Yt</i> 425	deg	4662	5492	-	-				
<i>Yt</i> 450	deg	4662	5595	-	5084				

Parameters of the plough body share-mouldboard surfaces

-	•	•		-			
1	2	3	4	5	6	7	8
Yt475	deg	5762	581000	-	4884		
Yt500	deg	5862	66104	-	4684		
Yt525	deg	5862	90109	-	3895		
Yt550	deg	5862	-	-	3895		
Yt575	deg	5866	-	-	3894		
Y1600	deg	-	-	-	3893		
Ye275	deg	43	-	-	29		
Ye300	deg	44	-	-	30		
Ye325	deg	45	-	-	29		
Ye350	deg	46	-	-	2818		
Ye375	deg	46	-	-	2616		
<i>Ye</i> 400	deg	46	42	-	179		
Ye425	deg	45.5	45	-	10		
Ye450	deg	45	46	-	-		
$h_{\gamma \min}$	mm	75100	75100	75100	50	0	
ε_{l} '	deg	33	30	36	30	26	2832
\mathcal{E}_1	deg	33	25	33	28	32	
\mathcal{E}_{1p}	deg	3632	29	14	30	-	
α_{1p}	deg	2523	24	1920	1820	20	
\mathcal{E}_2 '	deg	65	75	50	77	66	
\mathcal{E}_2 ''	deg	99	82	64	90	87	
\mathcal{E}_2 "	deg	112	120	131	130	114	124130
$\Delta \mathcal{E}'$	deg	32	45	14	47	40	
$\Delta \mathcal{E}$	deg	66	57	31	60	55	
$\Delta \varepsilon$ '''	deg	79	90	95	100	88	94100
α	deg	25	25	20	21	35	
b_s	mm	416	424	340	320	350	
b	cm	3542	3550	35	3050	3042	4550
h	mm	470	508	424	444	500	425480
h_t	mm	620	610	424	500554	-	
r	mm	520	438	410	455	275	410460
l_x	mm	850	1130	1226	1280	880	12001300
b_{y}	mm	520	626	566	620	660	
l _{ex}	mm	960	1290	-	14501396		
b_{ey}	mm	670	840	-	696750		

Table 1 (continued)

The coincidence of the horizontal projection of some bodies is shown in Fig. 4.

In Table 1 there are given parameters of the share-mouldboard surfaces of the plough bodies mentioned above. In addition, parameters are included in the table showing:

- the inclination angles of the share points $-\gamma_p$;
- the difference between the angles $-\Delta \gamma = \gamma_{top} \gamma_0$; $\Delta \gamma' = \gamma_0 \gamma_{min}$; $\Delta \gamma'' = \gamma_{top} \gamma_{min}$;
- the height of the shape line having a minimum inclination angle h_{min} ;
- the inclination angles of the shape lines of the trash-boards $-\gamma_t$;
- the difference between the angles $-\Delta \varepsilon' = \varepsilon_2' \varepsilon_1'$; $\Delta \varepsilon_1'' = \varepsilon_2'' \varepsilon_1''$; $\Delta \varepsilon_2''' = \varepsilon_2''' \varepsilon_1'$;
- the inclination angle of the share point in a vertical-longitudinal plane α_{lp} ;
- the high of the share-mouldboard surface together with the trash-board $-h_t$;
- the length of the share-mouldboard surface together with the extended lamina $-l_{ex}$;
- the width of the share-mouldboard surface together with the extended lamina $-b_y$.

The number at index γ shows the height of the horizontal shape lines from the ground.

The coincidence of the horizontal projection of the bodies (share-mouldboards) takes place in such away that the tips of the share points coincide (see Fig. 4). The coincidence for the body KVU 40.000 was more beaked to the left, therefore the contour of its project is beaked (turned) out of the contours of the other bodies (Fig. 4).

It is evident from the horizontal projects (Fig. 4) that the bodies Overums Bruk SA 600 HL, Kverneland No 8 and KVU 40.000 have longer and shallower mouldboards than the bodies PGC– 61.000 and P 135-13. Their shape lines and the parameters (Fig. 1) show that the share-mouldboard surface of the body SA 600 HL corresponds to the helicoidal surface, the bottom surfaces of the "Kverneland" No 8 and KVU 40.000 correspond to the semi-helicoidal surface but the share-mouldboard surface of the bottom PGC-61.000 – to the culture-semi-helicoidal surface and the bottom surface of P 135-13 – to the culture body. The parameters of the share-mouldboard surfaces of the first three bodies are closest to the optimal ones (Table 1) when working with the contemporary high-speed tractors [4].

The tests carried out with the ploughs showed that, by their energetic and agronomic indices, the most suitable for the work at contemporary speeds of $2.5...3 \text{ m s}^{-1}$ are the plough bodies with helicoidal or semi-helicoidal share-mouldboard surfaces [1, 2, 4]

Conclusions

- 1. By means of the created test-bench, profilograms (shape lines) were obtained for the sharemouldboard surfaces of some bodies mainly used on the farms of Latvia, as well as their parameters and suitability for the Latvian conditions were determined.
- 2. The conducted investigations show that more suitable for the work with contemporary high-speed tractors are the ploughs, which have bodies with gently sloping helicoidal or semi-helicoidal share-mouldboard surfaces.
- 3. The optimal values of the main parameters of the bottoms for contemporary ploughs working at the speeds $2.5...3 \text{ m s}^{-1}$ are: the inclination angle of the share towards the furrow bottom $28...32^{\circ}$; the inclination angle of the horizontal generatrix towards the furrow wall on the initial part of the share-mouldboard surface $34...38^{\circ}$, on the top not less than 48° ; the working width of the bottom 45...50 cm.
- 4. The use of the bodies having optimal parameters allows attaining good ploughing quality, reducing their draft resistance by 12...20 % and raising correspondingly the efficiency, saving fuel and financial resources for ploughing.
- 5. The suitability of the new ploughs for the Latvian conditions may be assessed by obtaining shape lines and determining the parameters of the share-mouldboards surfaces of the bodies.

References

- 1. Протокол № 21–73–85 (1062510) государственных испытаний корпусов винтовых по типу «Квернеланд» к плугам для обработки каменистых почв. Прибалтийская государственная зональная машиноиспытательная станция, Приекули, 1985, 167 с.
- 2. Протокол № 21–78–79–86 (1061710 и 1061810) государственных приемочных испытаний винтовых и полувинтовых корпусов КВУ 40.000 И КВУ 40.000–1 к плугам для обработки каменистых почв. Прибалтийская государственная зональная машиноиспытательная станция, Приекули, 1986, 211 с.
- 3. Протокол № 21–6–89 (9061900) предварительных испытаний импортного образца плуга полунавесного РН1–422 (ЧССР). Прибалтийская государственная зональная машиноиспытательная станция, Приекули, 1989, 75 с.
- 4. Ruciņš Ā. Arklu korpusu optimālo parametru un darba režīma pamatojums. Promocijas darbs D.sc.ing. zinātniskā grāda iegūšanai. Jelgava, 2007, 167 lpp.